1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
|
// Copyright (c) 2015-2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/merkle.h>
#include <test/setup_common.h>
#include <boost/test/unit_test.hpp>
BOOST_FIXTURE_TEST_SUITE(merkle_tests, TestingSetup)
static uint256 ComputeMerkleRootFromBranch(const uint256& leaf, const std::vector<uint256>& vMerkleBranch, uint32_t nIndex) {
uint256 hash = leaf;
for (std::vector<uint256>::const_iterator it = vMerkleBranch.begin(); it != vMerkleBranch.end(); ++it) {
if (nIndex & 1) {
hash = Hash(it->begin(), it->end(), hash.begin(), hash.end());
} else {
hash = Hash(hash.begin(), hash.end(), it->begin(), it->end());
}
nIndex >>= 1;
}
return hash;
}
/* This implements a constant-space merkle root/path calculator, limited to 2^32 leaves. */
static void MerkleComputation(const std::vector<uint256>& leaves, uint256* proot, bool* pmutated, uint32_t branchpos, std::vector<uint256>* pbranch) {
if (pbranch) pbranch->clear();
if (leaves.size() == 0) {
if (pmutated) *pmutated = false;
if (proot) *proot = uint256();
return;
}
bool mutated = false;
// count is the number of leaves processed so far.
uint32_t count = 0;
// inner is an array of eagerly computed subtree hashes, indexed by tree
// level (0 being the leaves).
// For example, when count is 25 (11001 in binary), inner[4] is the hash of
// the first 16 leaves, inner[3] of the next 8 leaves, and inner[0] equal to
// the last leaf. The other inner entries are undefined.
uint256 inner[32];
// Which position in inner is a hash that depends on the matching leaf.
int matchlevel = -1;
// First process all leaves into 'inner' values.
while (count < leaves.size()) {
uint256 h = leaves[count];
bool matchh = count == branchpos;
count++;
int level;
// For each of the lower bits in count that are 0, do 1 step. Each
// corresponds to an inner value that existed before processing the
// current leaf, and each needs a hash to combine it.
for (level = 0; !(count & (((uint32_t)1) << level)); level++) {
if (pbranch) {
if (matchh) {
pbranch->push_back(inner[level]);
} else if (matchlevel == level) {
pbranch->push_back(h);
matchh = true;
}
}
mutated |= (inner[level] == h);
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
}
// Store the resulting hash at inner position level.
inner[level] = h;
if (matchh) {
matchlevel = level;
}
}
// Do a final 'sweep' over the rightmost branch of the tree to process
// odd levels, and reduce everything to a single top value.
// Level is the level (counted from the bottom) up to which we've sweeped.
int level = 0;
// As long as bit number level in count is zero, skip it. It means there
// is nothing left at this level.
while (!(count & (((uint32_t)1) << level))) {
level++;
}
uint256 h = inner[level];
bool matchh = matchlevel == level;
while (count != (((uint32_t)1) << level)) {
// If we reach this point, h is an inner value that is not the top.
// We combine it with itself (Bitcoin's special rule for odd levels in
// the tree) to produce a higher level one.
if (pbranch && matchh) {
pbranch->push_back(h);
}
CHash256().Write(h.begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
// Increment count to the value it would have if two entries at this
// level had existed.
count += (((uint32_t)1) << level);
level++;
// And propagate the result upwards accordingly.
while (!(count & (((uint32_t)1) << level))) {
if (pbranch) {
if (matchh) {
pbranch->push_back(inner[level]);
} else if (matchlevel == level) {
pbranch->push_back(h);
matchh = true;
}
}
CHash256().Write(inner[level].begin(), 32).Write(h.begin(), 32).Finalize(h.begin());
level++;
}
}
// Return result.
if (pmutated) *pmutated = mutated;
if (proot) *proot = h;
}
static std::vector<uint256> ComputeMerkleBranch(const std::vector<uint256>& leaves, uint32_t position) {
std::vector<uint256> ret;
MerkleComputation(leaves, nullptr, nullptr, position, &ret);
return ret;
}
static std::vector<uint256> BlockMerkleBranch(const CBlock& block, uint32_t position)
{
std::vector<uint256> leaves;
leaves.resize(block.vtx.size());
for (size_t s = 0; s < block.vtx.size(); s++) {
leaves[s] = block.vtx[s]->GetHash();
}
return ComputeMerkleBranch(leaves, position);
}
// Older version of the merkle root computation code, for comparison.
static uint256 BlockBuildMerkleTree(const CBlock& block, bool* fMutated, std::vector<uint256>& vMerkleTree)
{
vMerkleTree.clear();
vMerkleTree.reserve(block.vtx.size() * 2 + 16); // Safe upper bound for the number of total nodes.
for (std::vector<CTransactionRef>::const_iterator it(block.vtx.begin()); it != block.vtx.end(); ++it)
vMerkleTree.push_back((*it)->GetHash());
int j = 0;
bool mutated = false;
for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
for (int i = 0; i < nSize; i += 2)
{
int i2 = std::min(i+1, nSize-1);
if (i2 == i + 1 && i2 + 1 == nSize && vMerkleTree[j+i] == vMerkleTree[j+i2]) {
// Two identical hashes at the end of the list at a particular level.
mutated = true;
}
vMerkleTree.push_back(Hash(vMerkleTree[j+i].begin(), vMerkleTree[j+i].end(),
vMerkleTree[j+i2].begin(), vMerkleTree[j+i2].end()));
}
j += nSize;
}
if (fMutated) {
*fMutated = mutated;
}
return (vMerkleTree.empty() ? uint256() : vMerkleTree.back());
}
// Older version of the merkle branch computation code, for comparison.
static std::vector<uint256> BlockGetMerkleBranch(const CBlock& block, const std::vector<uint256>& vMerkleTree, int nIndex)
{
std::vector<uint256> vMerkleBranch;
int j = 0;
for (int nSize = block.vtx.size(); nSize > 1; nSize = (nSize + 1) / 2)
{
int i = std::min(nIndex^1, nSize-1);
vMerkleBranch.push_back(vMerkleTree[j+i]);
nIndex >>= 1;
j += nSize;
}
return vMerkleBranch;
}
static inline int ctz(uint32_t i) {
if (i == 0) return 0;
int j = 0;
while (!(i & 1)) {
j++;
i >>= 1;
}
return j;
}
BOOST_AUTO_TEST_CASE(merkle_test)
{
for (int i = 0; i < 32; i++) {
// Try 32 block sizes: all sizes from 0 to 16 inclusive, and then 15 random sizes.
int ntx = (i <= 16) ? i : 17 + (InsecureRandRange(4000));
// Try up to 3 mutations.
for (int mutate = 0; mutate <= 3; mutate++) {
int duplicate1 = mutate >= 1 ? 1 << ctz(ntx) : 0; // The last how many transactions to duplicate first.
if (duplicate1 >= ntx) break; // Duplication of the entire tree results in a different root (it adds a level).
int ntx1 = ntx + duplicate1; // The resulting number of transactions after the first duplication.
int duplicate2 = mutate >= 2 ? 1 << ctz(ntx1) : 0; // Likewise for the second mutation.
if (duplicate2 >= ntx1) break;
int ntx2 = ntx1 + duplicate2;
int duplicate3 = mutate >= 3 ? 1 << ctz(ntx2) : 0; // And for the third mutation.
if (duplicate3 >= ntx2) break;
int ntx3 = ntx2 + duplicate3;
// Build a block with ntx different transactions.
CBlock block;
block.vtx.resize(ntx);
for (int j = 0; j < ntx; j++) {
CMutableTransaction mtx;
mtx.nLockTime = j;
block.vtx[j] = MakeTransactionRef(std::move(mtx));
}
// Compute the root of the block before mutating it.
bool unmutatedMutated = false;
uint256 unmutatedRoot = BlockMerkleRoot(block, &unmutatedMutated);
BOOST_CHECK(unmutatedMutated == false);
// Optionally mutate by duplicating the last transactions, resulting in the same merkle root.
block.vtx.resize(ntx3);
for (int j = 0; j < duplicate1; j++) {
block.vtx[ntx + j] = block.vtx[ntx + j - duplicate1];
}
for (int j = 0; j < duplicate2; j++) {
block.vtx[ntx1 + j] = block.vtx[ntx1 + j - duplicate2];
}
for (int j = 0; j < duplicate3; j++) {
block.vtx[ntx2 + j] = block.vtx[ntx2 + j - duplicate3];
}
// Compute the merkle root and merkle tree using the old mechanism.
bool oldMutated = false;
std::vector<uint256> merkleTree;
uint256 oldRoot = BlockBuildMerkleTree(block, &oldMutated, merkleTree);
// Compute the merkle root using the new mechanism.
bool newMutated = false;
uint256 newRoot = BlockMerkleRoot(block, &newMutated);
BOOST_CHECK(oldRoot == newRoot);
BOOST_CHECK(newRoot == unmutatedRoot);
BOOST_CHECK((newRoot == uint256()) == (ntx == 0));
BOOST_CHECK(oldMutated == newMutated);
BOOST_CHECK(newMutated == !!mutate);
// If no mutation was done (once for every ntx value), try up to 16 branches.
if (mutate == 0) {
for (int loop = 0; loop < std::min(ntx, 16); loop++) {
// If ntx <= 16, try all branches. Otherwise, try 16 random ones.
int mtx = loop;
if (ntx > 16) {
mtx = InsecureRandRange(ntx);
}
std::vector<uint256> newBranch = BlockMerkleBranch(block, mtx);
std::vector<uint256> oldBranch = BlockGetMerkleBranch(block, merkleTree, mtx);
BOOST_CHECK(oldBranch == newBranch);
BOOST_CHECK(ComputeMerkleRootFromBranch(block.vtx[mtx]->GetHash(), newBranch, mtx) == oldRoot);
}
}
}
}
}
BOOST_AUTO_TEST_SUITE_END()
|