1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
|
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/fuzz/util/net.h>
#include <compat/compat.h>
#include <netaddress.h>
#include <node/protocol_version.h>
#include <protocol.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/util.h>
#include <test/util/net.h>
#include <util/sock.h>
#include <util/time.h>
#include <array>
#include <cassert>
#include <cerrno>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <thread>
#include <vector>
class CNode;
CNetAddr ConsumeNetAddr(FuzzedDataProvider& fuzzed_data_provider, FastRandomContext* rand) noexcept
{
struct NetAux {
Network net;
CNetAddr::BIP155Network bip155;
size_t len;
};
static constexpr std::array<NetAux, 6> nets{
NetAux{.net = Network::NET_IPV4, .bip155 = CNetAddr::BIP155Network::IPV4, .len = ADDR_IPV4_SIZE},
NetAux{.net = Network::NET_IPV6, .bip155 = CNetAddr::BIP155Network::IPV6, .len = ADDR_IPV6_SIZE},
NetAux{.net = Network::NET_ONION, .bip155 = CNetAddr::BIP155Network::TORV3, .len = ADDR_TORV3_SIZE},
NetAux{.net = Network::NET_I2P, .bip155 = CNetAddr::BIP155Network::I2P, .len = ADDR_I2P_SIZE},
NetAux{.net = Network::NET_CJDNS, .bip155 = CNetAddr::BIP155Network::CJDNS, .len = ADDR_CJDNS_SIZE},
NetAux{.net = Network::NET_INTERNAL, .bip155 = CNetAddr::BIP155Network{0}, .len = 0},
};
const size_t nets_index{rand == nullptr
? fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, nets.size() - 1)
: static_cast<size_t>(rand->randrange(nets.size()))};
const auto& aux = nets[nets_index];
CNetAddr addr;
if (aux.net == Network::NET_INTERNAL) {
if (rand == nullptr) {
addr.SetInternal(fuzzed_data_provider.ConsumeBytesAsString(32));
} else {
const auto v = rand->randbytes(32);
addr.SetInternal(std::string{v.begin(), v.end()});
}
return addr;
}
DataStream s;
s << static_cast<uint8_t>(aux.bip155);
std::vector<uint8_t> addr_bytes;
if (rand == nullptr) {
addr_bytes = fuzzed_data_provider.ConsumeBytes<uint8_t>(aux.len);
addr_bytes.resize(aux.len);
} else {
addr_bytes = rand->randbytes(aux.len);
}
if (aux.net == NET_IPV6 && addr_bytes[0] == CJDNS_PREFIX) { // Avoid generating IPv6 addresses that look like CJDNS.
addr_bytes[0] = 0x55; // Just an arbitrary number, anything != CJDNS_PREFIX would do.
}
if (aux.net == NET_CJDNS) { // Avoid generating CJDNS addresses that don't start with CJDNS_PREFIX because those are !IsValid().
addr_bytes[0] = CJDNS_PREFIX;
}
s << addr_bytes;
s >> CAddress::V2_NETWORK(addr);
return addr;
}
CAddress ConsumeAddress(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
return {ConsumeService(fuzzed_data_provider), ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS), NodeSeconds{std::chrono::seconds{fuzzed_data_provider.ConsumeIntegral<uint32_t>()}}};
}
template <typename P>
P ConsumeDeserializationParams(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
constexpr std::array ADDR_ENCODINGS{
CNetAddr::Encoding::V1,
CNetAddr::Encoding::V2,
};
constexpr std::array ADDR_FORMATS{
CAddress::Format::Disk,
CAddress::Format::Network,
};
if constexpr (std::is_same_v<P, CNetAddr::SerParams>) {
return P{PickValue(fuzzed_data_provider, ADDR_ENCODINGS)};
}
if constexpr (std::is_same_v<P, CAddress::SerParams>) {
return P{{PickValue(fuzzed_data_provider, ADDR_ENCODINGS)}, PickValue(fuzzed_data_provider, ADDR_FORMATS)};
}
}
template CNetAddr::SerParams ConsumeDeserializationParams(FuzzedDataProvider&) noexcept;
template CAddress::SerParams ConsumeDeserializationParams(FuzzedDataProvider&) noexcept;
FuzzedSock::FuzzedSock(FuzzedDataProvider& fuzzed_data_provider)
: Sock{fuzzed_data_provider.ConsumeIntegralInRange<SOCKET>(INVALID_SOCKET - 1, INVALID_SOCKET)},
m_fuzzed_data_provider{fuzzed_data_provider},
m_selectable{fuzzed_data_provider.ConsumeBool()}
{
}
FuzzedSock::~FuzzedSock()
{
// Sock::~Sock() will be called after FuzzedSock::~FuzzedSock() and it will call
// close(m_socket) if m_socket is not INVALID_SOCKET.
// Avoid closing an arbitrary file descriptor (m_socket is just a random very high number which
// theoretically may concide with a real opened file descriptor).
m_socket = INVALID_SOCKET;
}
FuzzedSock& FuzzedSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into FuzzedSock not allowed.");
return *this;
}
ssize_t FuzzedSock::Send(const void* data, size_t len, int flags) const
{
constexpr std::array send_errnos{
EACCES,
EAGAIN,
EALREADY,
EBADF,
ECONNRESET,
EDESTADDRREQ,
EFAULT,
EINTR,
EINVAL,
EISCONN,
EMSGSIZE,
ENOBUFS,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EOPNOTSUPP,
EPIPE,
EWOULDBLOCK,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
return len;
}
const ssize_t r = m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(-1, len);
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, send_errnos);
}
return r;
}
ssize_t FuzzedSock::Recv(void* buf, size_t len, int flags) const
{
// Have a permanent error at recv_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Recv()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array recv_errnos{
ECONNREFUSED,
EAGAIN,
EBADF,
EFAULT,
EINTR,
EINVAL,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EWOULDBLOCK,
};
assert(buf != nullptr || len == 0);
// Do the latency before any of the "return" statements.
if (m_fuzzed_data_provider.ConsumeBool() && std::getenv("FUZZED_SOCKET_FAKE_LATENCY") != nullptr) {
std::this_thread::sleep_for(std::chrono::milliseconds{2});
}
if (len == 0 || m_fuzzed_data_provider.ConsumeBool()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
size_t copied_so_far{0};
if (!m_peek_data.empty()) {
// `MSG_PEEK` was used in the preceding `Recv()` call, copy the first bytes from `m_peek_data`.
const size_t copy_len{std::min(len, m_peek_data.size())};
std::memcpy(buf, m_peek_data.data(), copy_len);
copied_so_far += copy_len;
if ((flags & MSG_PEEK) == 0) {
m_peek_data.erase(m_peek_data.begin(), m_peek_data.begin() + copy_len);
}
}
if (copied_so_far == len) {
return copied_so_far;
}
auto new_data = ConsumeRandomLengthByteVector(m_fuzzed_data_provider, len - copied_so_far);
if (new_data.empty()) return copied_so_far;
std::memcpy(reinterpret_cast<uint8_t*>(buf) + copied_so_far, new_data.data(), new_data.size());
copied_so_far += new_data.size();
if ((flags & MSG_PEEK) != 0) {
m_peek_data.insert(m_peek_data.end(), new_data.begin(), new_data.end());
}
if (copied_so_far == len || m_fuzzed_data_provider.ConsumeBool()) {
return copied_so_far;
}
// Pad to len bytes.
std::memset(reinterpret_cast<uint8_t*>(buf) + copied_so_far, 0x0, len - copied_so_far);
return len;
}
int FuzzedSock::Connect(const sockaddr*, socklen_t) const
{
// Have a permanent error at connect_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Connect()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array connect_errnos{
ECONNREFUSED,
EAGAIN,
ECONNRESET,
EHOSTUNREACH,
EINPROGRESS,
EINTR,
ENETUNREACH,
ETIMEDOUT,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, connect_errnos);
return -1;
}
return 0;
}
int FuzzedSock::Bind(const sockaddr*, socklen_t) const
{
// Have a permanent error at bind_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always set the global errno to bind_errnos[0]. We want to
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
// repeatedly because proper code should retry on temporary errors, leading to an
// infinite loop.
constexpr std::array bind_errnos{
EACCES,
EADDRINUSE,
EADDRNOTAVAIL,
EAGAIN,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, bind_errnos);
return -1;
}
return 0;
}
int FuzzedSock::Listen(int) const
{
// Have a permanent error at listen_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always set the global errno to listen_errnos[0]. We want to
// avoid this method returning -1 and setting errno to a temporary error (like EAGAIN)
// repeatedly because proper code should retry on temporary errors, leading to an
// infinite loop.
constexpr std::array listen_errnos{
EADDRINUSE,
EINVAL,
EOPNOTSUPP,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, listen_errnos);
return -1;
}
return 0;
}
std::unique_ptr<Sock> FuzzedSock::Accept(sockaddr* addr, socklen_t* addr_len) const
{
constexpr std::array accept_errnos{
ECONNABORTED,
EINTR,
ENOMEM,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, accept_errnos);
return std::unique_ptr<FuzzedSock>();
}
return std::make_unique<FuzzedSock>(m_fuzzed_data_provider);
}
int FuzzedSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
constexpr std::array getsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockopt_errnos);
return -1;
}
if (opt_val == nullptr) {
return 0;
}
std::memcpy(opt_val,
ConsumeFixedLengthByteVector(m_fuzzed_data_provider, *opt_len).data(),
*opt_len);
return 0;
}
int FuzzedSock::SetSockOpt(int, int, const void*, socklen_t) const
{
constexpr std::array setsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, setsockopt_errnos);
return -1;
}
return 0;
}
int FuzzedSock::GetSockName(sockaddr* name, socklen_t* name_len) const
{
constexpr std::array getsockname_errnos{
ECONNRESET,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockname_errnos);
return -1;
}
*name_len = m_fuzzed_data_provider.ConsumeData(name, *name_len);
return 0;
}
bool FuzzedSock::SetNonBlocking() const
{
constexpr std::array setnonblocking_errnos{
EBADF,
EPERM,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, setnonblocking_errnos);
return false;
}
return true;
}
bool FuzzedSock::IsSelectable() const
{
return m_selectable;
}
bool FuzzedSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
constexpr std::array wait_errnos{
EBADF,
EINTR,
EINVAL,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, wait_errnos);
return false;
}
if (occurred != nullptr) {
// We simulate the requested event as occured when ConsumeBool()
// returns false. This avoids simulating endless waiting if the
// FuzzedDataProvider runs out of data.
*occurred = m_fuzzed_data_provider.ConsumeBool() ? 0 : requested;
}
return true;
}
bool FuzzedSock::WaitMany(std::chrono::milliseconds timeout, EventsPerSock& events_per_sock) const
{
for (auto& [sock, events] : events_per_sock) {
(void)sock;
// We simulate the requested event as occured when ConsumeBool()
// returns false. This avoids simulating endless waiting if the
// FuzzedDataProvider runs out of data.
events.occurred = m_fuzzed_data_provider.ConsumeBool() ? 0 : events.requested;
}
return true;
}
bool FuzzedSock::IsConnected(std::string& errmsg) const
{
if (m_fuzzed_data_provider.ConsumeBool()) {
return true;
}
errmsg = "disconnected at random by the fuzzer";
return false;
}
void FillNode(FuzzedDataProvider& fuzzed_data_provider, ConnmanTestMsg& connman, CNode& node) noexcept
{
connman.Handshake(node,
/*successfully_connected=*/fuzzed_data_provider.ConsumeBool(),
/*remote_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS),
/*local_services=*/ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS),
/*version=*/fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max()),
/*relay_txs=*/fuzzed_data_provider.ConsumeBool());
}
|