1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
|
// Copyright (c) 2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <test/fuzz/util.h>
#include <test/util/script.h>
#include <util/rbf.h>
#include <version.h>
FuzzedSock::FuzzedSock(FuzzedDataProvider& fuzzed_data_provider)
: m_fuzzed_data_provider{fuzzed_data_provider}
{
m_socket = fuzzed_data_provider.ConsumeIntegralInRange<SOCKET>(INVALID_SOCKET - 1, INVALID_SOCKET);
}
FuzzedSock::~FuzzedSock()
{
// Sock::~Sock() will be called after FuzzedSock::~FuzzedSock() and it will call
// Sock::Reset() (not FuzzedSock::Reset()!) which will call CloseSocket(m_socket).
// Avoid closing an arbitrary file descriptor (m_socket is just a random very high number which
// theoretically may concide with a real opened file descriptor).
Reset();
}
FuzzedSock& FuzzedSock::operator=(Sock&& other)
{
assert(false && "Move of Sock into FuzzedSock not allowed.");
return *this;
}
void FuzzedSock::Reset()
{
m_socket = INVALID_SOCKET;
}
ssize_t FuzzedSock::Send(const void* data, size_t len, int flags) const
{
constexpr std::array send_errnos{
EACCES,
EAGAIN,
EALREADY,
EBADF,
ECONNRESET,
EDESTADDRREQ,
EFAULT,
EINTR,
EINVAL,
EISCONN,
EMSGSIZE,
ENOBUFS,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EOPNOTSUPP,
EPIPE,
EWOULDBLOCK,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
return len;
}
const ssize_t r = m_fuzzed_data_provider.ConsumeIntegralInRange<ssize_t>(-1, len);
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, send_errnos);
}
return r;
}
ssize_t FuzzedSock::Recv(void* buf, size_t len, int flags) const
{
// Have a permanent error at recv_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Recv()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array recv_errnos{
ECONNREFUSED,
EAGAIN,
EBADF,
EFAULT,
EINTR,
EINVAL,
ENOMEM,
ENOTCONN,
ENOTSOCK,
EWOULDBLOCK,
};
assert(buf != nullptr || len == 0);
if (len == 0 || m_fuzzed_data_provider.ConsumeBool()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::vector<uint8_t> random_bytes;
bool pad_to_len_bytes{m_fuzzed_data_provider.ConsumeBool()};
if (m_peek_data.has_value()) {
// `MSG_PEEK` was used in the preceding `Recv()` call, return `m_peek_data`.
random_bytes.assign({m_peek_data.value()});
if ((flags & MSG_PEEK) == 0) {
m_peek_data.reset();
}
pad_to_len_bytes = false;
} else if ((flags & MSG_PEEK) != 0) {
// New call with `MSG_PEEK`.
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(1);
if (!random_bytes.empty()) {
m_peek_data = random_bytes[0];
pad_to_len_bytes = false;
}
} else {
random_bytes = m_fuzzed_data_provider.ConsumeBytes<uint8_t>(
m_fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, len));
}
if (random_bytes.empty()) {
const ssize_t r = m_fuzzed_data_provider.ConsumeBool() ? 0 : -1;
if (r == -1) {
SetFuzzedErrNo(m_fuzzed_data_provider, recv_errnos);
}
return r;
}
std::memcpy(buf, random_bytes.data(), random_bytes.size());
if (pad_to_len_bytes) {
if (len > random_bytes.size()) {
std::memset((char*)buf + random_bytes.size(), 0, len - random_bytes.size());
}
return len;
}
if (m_fuzzed_data_provider.ConsumeBool() && std::getenv("FUZZED_SOCKET_FAKE_LATENCY") != nullptr) {
std::this_thread::sleep_for(std::chrono::milliseconds{2});
}
return random_bytes.size();
}
int FuzzedSock::Connect(const sockaddr*, socklen_t) const
{
// Have a permanent error at connect_errnos[0] because when the fuzzed data is exhausted
// SetFuzzedErrNo() will always return the first element and we want to avoid Connect()
// returning -1 and setting errno to EAGAIN repeatedly.
constexpr std::array connect_errnos{
ECONNREFUSED,
EAGAIN,
ECONNRESET,
EHOSTUNREACH,
EINPROGRESS,
EINTR,
ENETUNREACH,
ETIMEDOUT,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, connect_errnos);
return -1;
}
return 0;
}
int FuzzedSock::GetSockOpt(int level, int opt_name, void* opt_val, socklen_t* opt_len) const
{
constexpr std::array getsockopt_errnos{
ENOMEM,
ENOBUFS,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, getsockopt_errnos);
return -1;
}
if (opt_val == nullptr) {
return 0;
}
std::memcpy(opt_val,
ConsumeFixedLengthByteVector(m_fuzzed_data_provider, *opt_len).data(),
*opt_len);
return 0;
}
bool FuzzedSock::Wait(std::chrono::milliseconds timeout, Event requested, Event* occurred) const
{
constexpr std::array wait_errnos{
EBADF,
EINTR,
EINVAL,
};
if (m_fuzzed_data_provider.ConsumeBool()) {
SetFuzzedErrNo(m_fuzzed_data_provider, wait_errnos);
return false;
}
if (occurred != nullptr) {
*occurred = m_fuzzed_data_provider.ConsumeBool() ? requested : 0;
}
return true;
}
bool FuzzedSock::IsConnected(std::string& errmsg) const
{
if (m_fuzzed_data_provider.ConsumeBool()) {
return true;
}
errmsg = "disconnected at random by the fuzzer";
return false;
}
void FillNode(FuzzedDataProvider& fuzzed_data_provider, CNode& node, bool init_version) noexcept
{
const ServiceFlags remote_services = ConsumeWeakEnum(fuzzed_data_provider, ALL_SERVICE_FLAGS);
const NetPermissionFlags permission_flags = ConsumeWeakEnum(fuzzed_data_provider, ALL_NET_PERMISSION_FLAGS);
const int32_t version = fuzzed_data_provider.ConsumeIntegralInRange<int32_t>(MIN_PEER_PROTO_VERSION, std::numeric_limits<int32_t>::max());
const bool filter_txs = fuzzed_data_provider.ConsumeBool();
node.nServices = remote_services;
node.m_permissionFlags = permission_flags;
if (init_version) {
node.nVersion = version;
node.SetCommonVersion(std::min(version, PROTOCOL_VERSION));
}
if (node.m_tx_relay != nullptr) {
LOCK(node.m_tx_relay->cs_filter);
node.m_tx_relay->fRelayTxes = filter_txs;
}
}
CMutableTransaction ConsumeTransaction(FuzzedDataProvider& fuzzed_data_provider, const std::optional<std::vector<uint256>>& prevout_txids, const int max_num_in, const int max_num_out) noexcept
{
CMutableTransaction tx_mut;
const auto p2wsh_op_true = fuzzed_data_provider.ConsumeBool();
tx_mut.nVersion = fuzzed_data_provider.ConsumeBool() ?
CTransaction::CURRENT_VERSION :
fuzzed_data_provider.ConsumeIntegral<int32_t>();
tx_mut.nLockTime = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
const auto num_in = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_in);
const auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<int>(0, max_num_out);
for (int i = 0; i < num_in; ++i) {
const auto& txid_prev = prevout_txids ?
PickValue(fuzzed_data_provider, *prevout_txids) :
ConsumeUInt256(fuzzed_data_provider);
const auto index_out = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(0, max_num_out);
const auto sequence = ConsumeSequence(fuzzed_data_provider);
const auto script_sig = p2wsh_op_true ? CScript{} : ConsumeScript(fuzzed_data_provider);
CScriptWitness script_wit;
if (p2wsh_op_true) {
script_wit.stack = std::vector<std::vector<uint8_t>>{WITNESS_STACK_ELEM_OP_TRUE};
} else {
script_wit = ConsumeScriptWitness(fuzzed_data_provider);
}
CTxIn in;
in.prevout = COutPoint{txid_prev, index_out};
in.nSequence = sequence;
in.scriptSig = script_sig;
in.scriptWitness = script_wit;
tx_mut.vin.push_back(in);
}
for (int i = 0; i < num_out; ++i) {
const auto amount = fuzzed_data_provider.ConsumeIntegralInRange<CAmount>(-10, 50 * COIN + 10);
const auto script_pk = p2wsh_op_true ?
P2WSH_OP_TRUE :
ConsumeScript(fuzzed_data_provider, /* max_length */ 128, /* maybe_p2wsh */ true);
tx_mut.vout.emplace_back(amount, script_pk);
}
return tx_mut;
}
CScriptWitness ConsumeScriptWitness(FuzzedDataProvider& fuzzed_data_provider, const size_t max_stack_elem_size) noexcept
{
CScriptWitness ret;
const auto n_elements = fuzzed_data_provider.ConsumeIntegralInRange<size_t>(0, max_stack_elem_size);
for (size_t i = 0; i < n_elements; ++i) {
ret.stack.push_back(ConsumeRandomLengthByteVector(fuzzed_data_provider));
}
return ret;
}
CScript ConsumeScript(FuzzedDataProvider& fuzzed_data_provider, const size_t max_length, const bool maybe_p2wsh) noexcept
{
const std::vector<uint8_t> b = ConsumeRandomLengthByteVector(fuzzed_data_provider, max_length);
CScript r_script{b.begin(), b.end()};
if (maybe_p2wsh && fuzzed_data_provider.ConsumeBool()) {
uint256 script_hash;
CSHA256().Write(r_script.data(), r_script.size()).Finalize(script_hash.begin());
r_script.clear();
r_script << OP_0 << ToByteVector(script_hash);
}
return r_script;
}
uint32_t ConsumeSequence(FuzzedDataProvider& fuzzed_data_provider) noexcept
{
return fuzzed_data_provider.ConsumeBool() ?
fuzzed_data_provider.PickValueInArray({
CTxIn::SEQUENCE_FINAL,
CTxIn::SEQUENCE_FINAL - 1,
MAX_BIP125_RBF_SEQUENCE,
}) :
fuzzed_data_provider.ConsumeIntegral<uint32_t>();
}
|