1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
|
// Copyright (c) 2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <consensus/amount.h>
#include <net.h>
#include <net_processing.h>
#include <primitives/transaction.h>
#include <script/script.h>
#include <sync.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <test/util/setup_common.h>
#include <txorphanage.h>
#include <uint256.h>
#include <util/check.h>
#include <util/time.h>
#include <algorithm>
#include <cstdint>
#include <memory>
#include <set>
#include <utility>
#include <vector>
void initialize_orphanage()
{
static const auto testing_setup = MakeNoLogFileContext();
}
FUZZ_TARGET_INIT(txorphan, initialize_orphanage)
{
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
SetMockTime(ConsumeTime(fuzzed_data_provider));
TxOrphanage orphanage;
std::set<uint256> orphan_work_set;
std::vector<COutPoint> outpoints;
// initial outpoints used to construct transactions later
for (uint8_t i = 0; i < 4; i++) {
outpoints.emplace_back(uint256{i}, 0);
}
// if true, allow duplicate input when constructing tx
const bool duplicate_input = fuzzed_data_provider.ConsumeBool();
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10 * DEFAULT_MAX_ORPHAN_TRANSACTIONS)
{
// construct transaction
const CTransactionRef tx = [&] {
CMutableTransaction tx_mut;
const auto num_in = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, outpoints.size());
const auto num_out = fuzzed_data_provider.ConsumeIntegralInRange<uint32_t>(1, outpoints.size());
// pick unique outpoints from outpoints as input
for (uint32_t i = 0; i < num_in; i++) {
auto& prevout = PickValue(fuzzed_data_provider, outpoints);
tx_mut.vin.emplace_back(prevout);
// pop the picked outpoint if duplicate input is not allowed
if (!duplicate_input) {
std::swap(prevout, outpoints.back());
outpoints.pop_back();
}
}
// output amount will not affect txorphanage
for (uint32_t i = 0; i < num_out; i++) {
tx_mut.vout.emplace_back(CAmount{0}, CScript{});
}
// restore previously poped outpoints
for (auto& in : tx_mut.vin) {
outpoints.push_back(in.prevout);
}
const auto new_tx = MakeTransactionRef(tx_mut);
// add newly constructed transaction to outpoints
for (uint32_t i = 0; i < num_out; i++) {
outpoints.emplace_back(new_tx->GetHash(), i);
}
return new_tx;
}();
// trigger orphanage functions
LIMITED_WHILE(fuzzed_data_provider.ConsumeBool(), 10 * DEFAULT_MAX_ORPHAN_TRANSACTIONS)
{
NodeId peer_id = fuzzed_data_provider.ConsumeIntegral<NodeId>();
CallOneOf(
fuzzed_data_provider,
[&] {
LOCK(g_cs_orphans);
orphanage.AddChildrenToWorkSet(*tx, orphan_work_set);
},
[&] {
bool have_tx = orphanage.HaveTx(GenTxid::Txid(tx->GetHash())) || orphanage.HaveTx(GenTxid::Wtxid(tx->GetHash()));
{
LOCK(g_cs_orphans);
bool get_tx = orphanage.GetTx(tx->GetHash()).first != nullptr;
Assert(have_tx == get_tx);
}
},
[&] {
bool have_tx = orphanage.HaveTx(GenTxid::Txid(tx->GetHash())) || orphanage.HaveTx(GenTxid::Wtxid(tx->GetHash()));
// AddTx should return false if tx is too big or already have it
{
LOCK(g_cs_orphans);
Assert(have_tx != orphanage.AddTx(tx, peer_id));
}
have_tx = orphanage.HaveTx(GenTxid::Txid(tx->GetHash())) || orphanage.HaveTx(GenTxid::Wtxid(tx->GetHash()));
// tx should already be added since it will not be too big in the test
// have_tx should be true and AddTx should fail
{
LOCK(g_cs_orphans);
Assert(have_tx && !orphanage.AddTx(tx, peer_id));
}
},
[&] {
bool have_tx = orphanage.HaveTx(GenTxid::Txid(tx->GetHash())) || orphanage.HaveTx(GenTxid::Wtxid(tx->GetHash()));
// EraseTx should return 0 if m_orphans doesn't have the tx
{
LOCK(g_cs_orphans);
Assert(have_tx == orphanage.EraseTx(tx->GetHash()));
}
have_tx = orphanage.HaveTx(GenTxid::Txid(tx->GetHash())) || orphanage.HaveTx(GenTxid::Wtxid(tx->GetHash()));
// have_tx should be false and EraseTx should fail
{
LOCK(g_cs_orphans);
Assert(!have_tx && !orphanage.EraseTx(tx->GetHash()));
}
},
[&] {
LOCK(g_cs_orphans);
orphanage.EraseForPeer(peer_id);
},
[&] {
// test mocktime and expiry
SetMockTime(ConsumeTime(fuzzed_data_provider));
auto size_before = orphanage.Size();
auto limit = fuzzed_data_provider.ConsumeIntegral<unsigned int>();
auto n_evicted = WITH_LOCK(g_cs_orphans, return orphanage.LimitOrphans(limit));
Assert(size_before - n_evicted <= limit);
Assert(orphanage.Size() <= limit);
});
}
}
}
|