1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
|
// Copyright (c) 2019 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <amount.h>
#include <arith_uint256.h>
#include <compressor.h>
#include <consensus/merkle.h>
#include <core_io.h>
#include <crypto/common.h>
#include <crypto/siphash.h>
#include <key_io.h>
#include <memusage.h>
#include <netbase.h>
#include <policy/settings.h>
#include <pow.h>
#include <pubkey.h>
#include <rpc/util.h>
#include <script/signingprovider.h>
#include <script/standard.h>
#include <serialize.h>
#include <streams.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <uint256.h>
#include <util/strencodings.h>
#include <util/system.h>
#include <util/time.h>
#include <version.h>
#include <cassert>
#include <limits>
#include <vector>
void initialize()
{
SelectParams(CBaseChainParams::REGTEST);
}
void test_one_input(const std::vector<uint8_t>& buffer)
{
if (buffer.size() < sizeof(uint256) + sizeof(uint160)) {
return;
}
FuzzedDataProvider fuzzed_data_provider(buffer.data(), buffer.size());
const uint256 u256(fuzzed_data_provider.ConsumeBytes<unsigned char>(sizeof(uint256)));
const uint160 u160(fuzzed_data_provider.ConsumeBytes<unsigned char>(sizeof(uint160)));
const uint64_t u64 = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
const int64_t i64 = fuzzed_data_provider.ConsumeIntegral<int64_t>();
const uint32_t u32 = fuzzed_data_provider.ConsumeIntegral<uint32_t>();
const int32_t i32 = fuzzed_data_provider.ConsumeIntegral<int32_t>();
const uint16_t u16 = fuzzed_data_provider.ConsumeIntegral<uint16_t>();
const int16_t i16 = fuzzed_data_provider.ConsumeIntegral<int16_t>();
const uint8_t u8 = fuzzed_data_provider.ConsumeIntegral<uint8_t>();
const int8_t i8 = fuzzed_data_provider.ConsumeIntegral<int8_t>();
// We cannot assume a specific value of std::is_signed<char>::value:
// ConsumeIntegral<char>() instead of casting from {u,}int8_t.
const char ch = fuzzed_data_provider.ConsumeIntegral<char>();
const bool b = fuzzed_data_provider.ConsumeBool();
const Consensus::Params& consensus_params = Params().GetConsensus();
(void)CheckProofOfWork(u256, u32, consensus_params);
if (u64 <= MAX_MONEY) {
const uint64_t compressed_money_amount = CompressAmount(u64);
assert(u64 == DecompressAmount(compressed_money_amount));
static const uint64_t compressed_money_amount_max = CompressAmount(MAX_MONEY - 1);
assert(compressed_money_amount <= compressed_money_amount_max);
} else {
(void)CompressAmount(u64);
}
static const uint256 u256_min(uint256S("0000000000000000000000000000000000000000000000000000000000000000"));
static const uint256 u256_max(uint256S("ffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffffff"));
const std::vector<uint256> v256{u256, u256_min, u256_max};
(void)ComputeMerkleRoot(v256);
(void)CountBits(u64);
(void)DecompressAmount(u64);
(void)FormatISO8601Date(i64);
(void)FormatISO8601DateTime(i64);
(void)GetSizeOfCompactSize(u64);
(void)GetSpecialScriptSize(u32);
// (void)GetVirtualTransactionSize(i64, i64); // function defined only for a subset of int64_t inputs
// (void)GetVirtualTransactionSize(i64, i64, u32); // function defined only for a subset of int64_t/uint32_t inputs
(void)HexDigit(ch);
(void)i64tostr(i64);
(void)IsDigit(ch);
(void)IsSpace(ch);
(void)IsSwitchChar(ch);
(void)itostr(i32);
(void)memusage::DynamicUsage(ch);
(void)memusage::DynamicUsage(i16);
(void)memusage::DynamicUsage(i32);
(void)memusage::DynamicUsage(i64);
(void)memusage::DynamicUsage(i8);
(void)memusage::DynamicUsage(u16);
(void)memusage::DynamicUsage(u32);
(void)memusage::DynamicUsage(u64);
(void)memusage::DynamicUsage(u8);
const unsigned char uch = static_cast<unsigned char>(u8);
(void)memusage::DynamicUsage(uch);
(void)MillisToTimeval(i64);
const double d = ser_uint64_to_double(u64);
assert(ser_double_to_uint64(d) == u64);
const float f = ser_uint32_to_float(u32);
assert(ser_float_to_uint32(f) == u32);
(void)SighashToStr(uch);
(void)SipHashUint256(u64, u64, u256);
(void)SipHashUint256Extra(u64, u64, u256, u32);
(void)ToLower(ch);
const arith_uint256 au256 = UintToArith256(u256);
assert(ArithToUint256(au256) == u256);
assert(uint256S(au256.GetHex()) == u256);
(void)au256.bits();
(void)au256.GetCompact(/* fNegative= */ false);
(void)au256.GetCompact(/* fNegative= */ true);
(void)au256.getdouble();
(void)au256.GetHex();
(void)au256.GetLow64();
(void)au256.size();
(void)au256.ToString();
const CKeyID key_id{u160};
const CScriptID script_id{u160};
// CTxDestination = CNoDestination ∪ PKHash ∪ ScriptHash ∪ WitnessV0ScriptHash ∪ WitnessV0KeyHash ∪ WitnessUnknown
const PKHash pk_hash{u160};
const ScriptHash script_hash{u160};
const WitnessV0KeyHash witness_v0_key_hash{u160};
const WitnessV0ScriptHash witness_v0_script_hash{u256};
const std::vector<CTxDestination> destinations{pk_hash, script_hash, witness_v0_key_hash, witness_v0_script_hash};
const SigningProvider store;
for (const CTxDestination& destination : destinations) {
(void)DescribeAddress(destination);
(void)EncodeDestination(destination);
(void)GetKeyForDestination(store, destination);
(void)GetScriptForDestination(destination);
(void)IsValidDestination(destination);
}
{
CDataStream stream(SER_NETWORK, INIT_PROTO_VERSION);
uint256 deserialized_u256;
stream << u256;
stream >> deserialized_u256;
assert(u256 == deserialized_u256 && stream.empty());
uint160 deserialized_u160;
stream << u160;
stream >> deserialized_u160;
assert(u160 == deserialized_u160 && stream.empty());
uint64_t deserialized_u64;
stream << u64;
stream >> deserialized_u64;
assert(u64 == deserialized_u64 && stream.empty());
int64_t deserialized_i64;
stream << i64;
stream >> deserialized_i64;
assert(i64 == deserialized_i64 && stream.empty());
uint32_t deserialized_u32;
stream << u32;
stream >> deserialized_u32;
assert(u32 == deserialized_u32 && stream.empty());
int32_t deserialized_i32;
stream << i32;
stream >> deserialized_i32;
assert(i32 == deserialized_i32 && stream.empty());
uint16_t deserialized_u16;
stream << u16;
stream >> deserialized_u16;
assert(u16 == deserialized_u16 && stream.empty());
int16_t deserialized_i16;
stream << i16;
stream >> deserialized_i16;
assert(i16 == deserialized_i16 && stream.empty());
uint8_t deserialized_u8;
stream << u8;
stream >> deserialized_u8;
assert(u8 == deserialized_u8 && stream.empty());
int8_t deserialized_i8;
stream << i8;
stream >> deserialized_i8;
assert(i8 == deserialized_i8 && stream.empty());
char deserialized_ch;
stream << ch;
stream >> deserialized_ch;
assert(ch == deserialized_ch && stream.empty());
bool deserialized_b;
stream << b;
stream >> deserialized_b;
assert(b == deserialized_b && stream.empty());
}
}
|