1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
|
// Copyright (c) 2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <crypto/hmac_sha256.h>
#include <crypto/hmac_sha512.h>
#include <crypto/ripemd160.h>
#include <crypto/sha1.h>
#include <crypto/sha256.h>
#include <crypto/sha3.h>
#include <crypto/sha512.h>
#include <hash.h>
#include <test/fuzz/FuzzedDataProvider.h>
#include <test/fuzz/fuzz.h>
#include <test/fuzz/util.h>
#include <cstdint>
#include <vector>
FUZZ_TARGET(crypto)
{
FuzzedDataProvider fuzzed_data_provider{buffer.data(), buffer.size()};
std::vector<uint8_t> data = ConsumeRandomLengthByteVector(fuzzed_data_provider);
if (data.empty()) {
data.resize(fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 4096), fuzzed_data_provider.ConsumeIntegral<uint8_t>());
}
CHash160 hash160;
CHash256 hash256;
CHMAC_SHA256 hmac_sha256{data.data(), data.size()};
CHMAC_SHA512 hmac_sha512{data.data(), data.size()};
CRIPEMD160 ripemd160;
CSHA1 sha1;
CSHA256 sha256;
CSHA512 sha512;
SHA3_256 sha3;
CSipHasher sip_hasher{fuzzed_data_provider.ConsumeIntegral<uint64_t>(), fuzzed_data_provider.ConsumeIntegral<uint64_t>()};
while (fuzzed_data_provider.ConsumeBool()) {
switch (fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 2)) {
case 0: {
if (fuzzed_data_provider.ConsumeBool()) {
data = ConsumeRandomLengthByteVector(fuzzed_data_provider);
if (data.empty()) {
data.resize(fuzzed_data_provider.ConsumeIntegralInRange<size_t>(1, 4096), fuzzed_data_provider.ConsumeIntegral<uint8_t>());
}
}
(void)hash160.Write(data);
(void)hash256.Write(data);
(void)hmac_sha256.Write(data.data(), data.size());
(void)hmac_sha512.Write(data.data(), data.size());
(void)ripemd160.Write(data.data(), data.size());
(void)sha1.Write(data.data(), data.size());
(void)sha256.Write(data.data(), data.size());
(void)sha3.Write(data);
(void)sha512.Write(data.data(), data.size());
(void)sip_hasher.Write(data.data(), data.size());
(void)Hash(data);
(void)Hash160(data);
(void)sha512.Size();
break;
}
case 1: {
(void)hash160.Reset();
(void)hash256.Reset();
(void)ripemd160.Reset();
(void)sha1.Reset();
(void)sha256.Reset();
(void)sha3.Reset();
(void)sha512.Reset();
break;
}
case 2: {
switch (fuzzed_data_provider.ConsumeIntegralInRange<int>(0, 9)) {
case 0: {
data.resize(CHash160::OUTPUT_SIZE);
hash160.Finalize(data);
break;
}
case 1: {
data.resize(CHash256::OUTPUT_SIZE);
hash256.Finalize(data);
break;
}
case 2: {
data.resize(CHMAC_SHA256::OUTPUT_SIZE);
hmac_sha256.Finalize(data.data());
break;
}
case 3: {
data.resize(CHMAC_SHA512::OUTPUT_SIZE);
hmac_sha512.Finalize(data.data());
break;
}
case 4: {
data.resize(CRIPEMD160::OUTPUT_SIZE);
ripemd160.Finalize(data.data());
break;
}
case 5: {
data.resize(CSHA1::OUTPUT_SIZE);
sha1.Finalize(data.data());
break;
}
case 6: {
data.resize(CSHA256::OUTPUT_SIZE);
sha256.Finalize(data.data());
break;
}
case 7: {
data.resize(CSHA512::OUTPUT_SIZE);
sha512.Finalize(data.data());
break;
}
case 8: {
data.resize(1);
data[0] = sip_hasher.Finalize() % 256;
break;
}
case 9: {
data.resize(SHA3_256::OUTPUT_SIZE);
sha3.Finalize(data);
break;
}
}
break;
}
}
}
if (fuzzed_data_provider.ConsumeBool()) {
uint64_t state[25];
for (size_t i = 0; i < 25; ++i) {
state[i] = fuzzed_data_provider.ConsumeIntegral<uint64_t>();
}
KeccakF(state);
}
}
|