1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
|
//===- FuzzedDataProvider.h - Utility header for fuzz targets ---*- C++ -* ===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// A single header library providing an utility class to break up an array of
// bytes. Whenever run on the same input, provides the same output, as long as
// its methods are called in the same order, with the same arguments.
//===----------------------------------------------------------------------===//
#ifndef LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
#define LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
#include <limits.h>
#include <stddef.h>
#include <stdint.h>
#include <algorithm>
#include <cstring>
#include <initializer_list>
#include <string>
#include <type_traits>
#include <utility>
#include <vector>
class FuzzedDataProvider {
public:
// |data| is an array of length |size| that the FuzzedDataProvider wraps to
// provide more granular access. |data| must outlive the FuzzedDataProvider.
FuzzedDataProvider(const uint8_t *data, size_t size)
: data_ptr_(data), remaining_bytes_(size) {}
~FuzzedDataProvider() = default;
// Returns a std::vector containing |num_bytes| of input data. If fewer than
// |num_bytes| of data remain, returns a shorter std::vector containing all
// of the data that's left. Can be used with any byte sized type, such as
// char, unsigned char, uint8_t, etc.
template <typename T> std::vector<T> ConsumeBytes(size_t num_bytes) {
num_bytes = std::min(num_bytes, remaining_bytes_);
return ConsumeBytes<T>(num_bytes, num_bytes);
}
// Similar to |ConsumeBytes|, but also appends the terminator value at the end
// of the resulting vector. Useful, when a mutable null-terminated C-string is
// needed, for example. But that is a rare case. Better avoid it, if possible,
// and prefer using |ConsumeBytes| or |ConsumeBytesAsString| methods.
template <typename T>
std::vector<T> ConsumeBytesWithTerminator(size_t num_bytes,
T terminator = 0) {
num_bytes = std::min(num_bytes, remaining_bytes_);
std::vector<T> result = ConsumeBytes<T>(num_bytes + 1, num_bytes);
result.back() = terminator;
return result;
}
// Returns a std::string containing |num_bytes| of input data. Using this and
// |.c_str()| on the resulting string is the best way to get an immutable
// null-terminated C string. If fewer than |num_bytes| of data remain, returns
// a shorter std::string containing all of the data that's left.
std::string ConsumeBytesAsString(size_t num_bytes) {
static_assert(sizeof(std::string::value_type) == sizeof(uint8_t),
"ConsumeBytesAsString cannot convert the data to a string.");
num_bytes = std::min(num_bytes, remaining_bytes_);
std::string result(
reinterpret_cast<const std::string::value_type *>(data_ptr_),
num_bytes);
Advance(num_bytes);
return result;
}
// Returns a number in the range [min, max] by consuming bytes from the
// input data. The value might not be uniformly distributed in the given
// range. If there's no input data left, always returns |min|. |min| must
// be less than or equal to |max|.
template <typename T> T ConsumeIntegralInRange(T min, T max) {
static_assert(std::is_integral<T>::value, "An integral type is required.");
static_assert(sizeof(T) <= sizeof(uint64_t), "Unsupported integral type.");
if (min > max)
abort();
// Use the biggest type possible to hold the range and the result.
uint64_t range = static_cast<uint64_t>(max) - min;
uint64_t result = 0;
size_t offset = 0;
while (offset < sizeof(T) * CHAR_BIT && (range >> offset) > 0 &&
remaining_bytes_ != 0) {
// Pull bytes off the end of the seed data. Experimentally, this seems to
// allow the fuzzer to more easily explore the input space. This makes
// sense, since it works by modifying inputs that caused new code to run,
// and this data is often used to encode length of data read by
// |ConsumeBytes|. Separating out read lengths makes it easier modify the
// contents of the data that is actually read.
--remaining_bytes_;
result = (result << CHAR_BIT) | data_ptr_[remaining_bytes_];
offset += CHAR_BIT;
}
// Avoid division by 0, in case |range + 1| results in overflow.
if (range != std::numeric_limits<decltype(range)>::max())
result = result % (range + 1);
return static_cast<T>(min + result);
}
// Returns a std::string of length from 0 to |max_length|. When it runs out of
// input data, returns what remains of the input. Designed to be more stable
// with respect to a fuzzer inserting characters than just picking a random
// length and then consuming that many bytes with |ConsumeBytes|.
std::string ConsumeRandomLengthString(size_t max_length) {
// Reads bytes from the start of |data_ptr_|. Maps "\\" to "\", and maps "\"
// followed by anything else to the end of the string. As a result of this
// logic, a fuzzer can insert characters into the string, and the string
// will be lengthened to include those new characters, resulting in a more
// stable fuzzer than picking the length of a string independently from
// picking its contents.
std::string result;
// Reserve the anticipated capaticity to prevent several reallocations.
result.reserve(std::min(max_length, remaining_bytes_));
for (size_t i = 0; i < max_length && remaining_bytes_ != 0; ++i) {
char next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next == '\\' && remaining_bytes_ != 0) {
next = ConvertUnsignedToSigned<char>(data_ptr_[0]);
Advance(1);
if (next != '\\')
break;
}
result += next;
}
result.shrink_to_fit();
return result;
}
// Returns a std::vector containing all remaining bytes of the input data.
template <typename T> std::vector<T> ConsumeRemainingBytes() {
return ConsumeBytes<T>(remaining_bytes_);
}
// Prefer using |ConsumeRemainingBytes| unless you actually need a std::string
// object.
// Returns a std::vector containing all remaining bytes of the input data.
std::string ConsumeRemainingBytesAsString() {
return ConsumeBytesAsString(remaining_bytes_);
}
// Returns a number in the range [Type's min, Type's max]. The value might
// not be uniformly distributed in the given range. If there's no input data
// left, always returns |min|.
template <typename T> T ConsumeIntegral() {
return ConsumeIntegralInRange(std::numeric_limits<T>::min(),
std::numeric_limits<T>::max());
}
// Reads one byte and returns a bool, or false when no data remains.
bool ConsumeBool() { return 1 & ConsumeIntegral<uint8_t>(); }
// Returns a copy of a value selected from a fixed-size |array|.
template <typename T, size_t size>
T PickValueInArray(const T (&array)[size]) {
static_assert(size > 0, "The array must be non empty.");
return array[ConsumeIntegralInRange<size_t>(0, size - 1)];
}
template <typename T>
T PickValueInArray(std::initializer_list<const T> list) {
// static_assert(list.size() > 0, "The array must be non empty.");
return *(list.begin() + ConsumeIntegralInRange<size_t>(0, list.size() - 1));
}
// Return an enum value. The enum must start at 0 and be contiguous. It must
// also contain |kMaxValue| aliased to its largest (inclusive) value. Such as:
// enum class Foo { SomeValue, OtherValue, kMaxValue = OtherValue };
template <typename T> T ConsumeEnum() {
static_assert(std::is_enum<T>::value, "|T| must be an enum type.");
return static_cast<T>(ConsumeIntegralInRange<uint32_t>(
0, static_cast<uint32_t>(T::kMaxValue)));
}
// Reports the remaining bytes available for fuzzed input.
size_t remaining_bytes() { return remaining_bytes_; }
private:
FuzzedDataProvider(const FuzzedDataProvider &) = delete;
FuzzedDataProvider &operator=(const FuzzedDataProvider &) = delete;
void Advance(size_t num_bytes) {
if (num_bytes > remaining_bytes_)
abort();
data_ptr_ += num_bytes;
remaining_bytes_ -= num_bytes;
}
template <typename T>
std::vector<T> ConsumeBytes(size_t size, size_t num_bytes_to_consume) {
static_assert(sizeof(T) == sizeof(uint8_t), "Incompatible data type.");
// The point of using the size-based constructor below is to increase the
// odds of having a vector object with capacity being equal to the length.
// That part is always implementation specific, but at least both libc++ and
// libstdc++ allocate the requested number of bytes in that constructor,
// which seems to be a natural choice for other implementations as well.
// To increase the odds even more, we also call |shrink_to_fit| below.
std::vector<T> result(size);
std::memcpy(result.data(), data_ptr_, num_bytes_to_consume);
Advance(num_bytes_to_consume);
// Even though |shrink_to_fit| is also implementation specific, we expect it
// to provide an additional assurance in case vector's constructor allocated
// a buffer which is larger than the actual amount of data we put inside it.
result.shrink_to_fit();
return result;
}
template <typename TS, typename TU> TS ConvertUnsignedToSigned(TU value) {
static_assert(sizeof(TS) == sizeof(TU), "Incompatible data types.");
static_assert(!std::numeric_limits<TU>::is_signed,
"Source type must be unsigned.");
// TODO(Dor1s): change to `if constexpr` once C++17 becomes mainstream.
if (std::numeric_limits<TS>::is_modulo)
return static_cast<TS>(value);
// Avoid using implementation-defined unsigned to signer conversions.
// To learn more, see https://stackoverflow.com/questions/13150449.
if (value <= std::numeric_limits<TS>::max())
return static_cast<TS>(value);
else {
constexpr auto TS_min = std::numeric_limits<TS>::min();
return TS_min + static_cast<char>(value - TS_min);
}
}
const uint8_t *data_ptr_;
size_t remaining_bytes_;
};
#endif // LLVM_FUZZER_FUZZED_DATA_PROVIDER_H_
|