aboutsummaryrefslogtreecommitdiff
path: root/src/test/coins_tests.cpp
blob: 79dea00e46edb4615318322b0ef68be18c87cc45 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
// Copyright (c) 2014-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "coins.h"
#include "script/standard.h"
#include "uint256.h"
#include "utilstrencodings.h"
#include "test/test_bitcoin.h"
#include "test/test_random.h"
#include "validation.h"
#include "consensus/validation.h"

#include <vector>
#include <map>

#include <boost/test/unit_test.hpp>

namespace
{
class CCoinsViewTest : public CCoinsView
{
    uint256 hashBestBlock_;
    std::map<uint256, CCoins> map_;

public:
    bool GetCoins(const uint256& txid, CCoins& coins) const
    {
        std::map<uint256, CCoins>::const_iterator it = map_.find(txid);
        if (it == map_.end()) {
            return false;
        }
        coins = it->second;
        if (coins.IsPruned() && insecure_rand() % 2 == 0) {
            // Randomly return false in case of an empty entry.
            return false;
        }
        return true;
    }

    bool HaveCoins(const uint256& txid) const
    {
        CCoins coins;
        return GetCoins(txid, coins);
    }

    uint256 GetBestBlock() const { return hashBestBlock_; }

    bool BatchWrite(CCoinsMap& mapCoins, const uint256& hashBlock)
    {
        for (CCoinsMap::iterator it = mapCoins.begin(); it != mapCoins.end(); ) {
            if (it->second.flags & CCoinsCacheEntry::DIRTY) {
                // Same optimization used in CCoinsViewDB is to only write dirty entries.
                map_[it->first] = it->second.coins;
                if (it->second.coins.IsPruned() && insecure_rand() % 3 == 0) {
                    // Randomly delete empty entries on write.
                    map_.erase(it->first);
                }
            }
            mapCoins.erase(it++);
        }
        if (!hashBlock.IsNull())
            hashBestBlock_ = hashBlock;
        return true;
    }
};

class CCoinsViewCacheTest : public CCoinsViewCache
{
public:
    CCoinsViewCacheTest(CCoinsView* base) : CCoinsViewCache(base) {}

    void SelfTest() const
    {
        // Manually recompute the dynamic usage of the whole data, and compare it.
        size_t ret = memusage::DynamicUsage(cacheCoins);
        for (CCoinsMap::iterator it = cacheCoins.begin(); it != cacheCoins.end(); it++) {
            ret += it->second.coins.DynamicMemoryUsage();
        }
        BOOST_CHECK_EQUAL(DynamicMemoryUsage(), ret);
    }

};

}

BOOST_FIXTURE_TEST_SUITE(coins_tests, BasicTestingSetup)

static const unsigned int NUM_SIMULATION_ITERATIONS = 40000;

// This is a large randomized insert/remove simulation test on a variable-size
// stack of caches on top of CCoinsViewTest.
//
// It will randomly create/update/delete CCoins entries to a tip of caches, with
// txids picked from a limited list of random 256-bit hashes. Occasionally, a
// new tip is added to the stack of caches, or the tip is flushed and removed.
//
// During the process, booleans are kept to make sure that the randomized
// operation hits all branches.
BOOST_AUTO_TEST_CASE(coins_cache_simulation_test)
{
    // Various coverage trackers.
    bool removed_all_caches = false;
    bool reached_4_caches = false;
    bool added_an_entry = false;
    bool removed_an_entry = false;
    bool updated_an_entry = false;
    bool found_an_entry = false;
    bool missed_an_entry = false;

    // A simple map to track what we expect the cache stack to represent.
    std::map<uint256, CCoins> result;

    // The cache stack.
    CCoinsViewTest base; // A CCoinsViewTest at the bottom.
    std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
    stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.

    // Use a limited set of random transaction ids, so we do test overwriting entries.
    std::vector<uint256> txids;
    txids.resize(NUM_SIMULATION_ITERATIONS / 8);
    for (unsigned int i = 0; i < txids.size(); i++) {
        txids[i] = GetRandHash();
    }

    for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
        // Do a random modification.
        {
            uint256 txid = txids[insecure_rand() % txids.size()]; // txid we're going to modify in this iteration.
            CCoins& coins = result[txid];
            CCoinsModifier entry = stack.back()->ModifyCoins(txid);
            BOOST_CHECK(coins == *entry);
            if (insecure_rand() % 5 == 0 || coins.IsPruned()) {
                if (coins.IsPruned()) {
                    added_an_entry = true;
                } else {
                    updated_an_entry = true;
                }
                coins.nVersion = insecure_rand();
                coins.vout.resize(1);
                coins.vout[0].nValue = insecure_rand();
                *entry = coins;
            } else {
                coins.Clear();
                entry->Clear();
                removed_an_entry = true;
            }
        }

        // Once every 1000 iterations and at the end, verify the full cache.
        if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
            for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
                const CCoins* coins = stack.back()->AccessCoins(it->first);
                if (coins) {
                    BOOST_CHECK(*coins == it->second);
                    found_an_entry = true;
                } else {
                    BOOST_CHECK(it->second.IsPruned());
                    missed_an_entry = true;
                }
            }
            BOOST_FOREACH(const CCoinsViewCacheTest *test, stack) {
                test->SelfTest();
            }
        }

        if (insecure_rand() % 100 == 0) {
            // Every 100 iterations, flush an intermediate cache
            if (stack.size() > 1 && insecure_rand() % 2 == 0) {
                unsigned int flushIndex = insecure_rand() % (stack.size() - 1);
                stack[flushIndex]->Flush();
            }
        }
        if (insecure_rand() % 100 == 0) {
            // Every 100 iterations, change the cache stack.
            if (stack.size() > 0 && insecure_rand() % 2 == 0) {
                //Remove the top cache
                stack.back()->Flush();
                delete stack.back();
                stack.pop_back();
            }
            if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) {
                //Add a new cache
                CCoinsView* tip = &base;
                if (stack.size() > 0) {
                    tip = stack.back();
                } else {
                    removed_all_caches = true;
                }
                stack.push_back(new CCoinsViewCacheTest(tip));
                if (stack.size() == 4) {
                    reached_4_caches = true;
                }
            }
        }
    }

    // Clean up the stack.
    while (stack.size() > 0) {
        delete stack.back();
        stack.pop_back();
    }

    // Verify coverage.
    BOOST_CHECK(removed_all_caches);
    BOOST_CHECK(reached_4_caches);
    BOOST_CHECK(added_an_entry);
    BOOST_CHECK(removed_an_entry);
    BOOST_CHECK(updated_an_entry);
    BOOST_CHECK(found_an_entry);
    BOOST_CHECK(missed_an_entry);
}

// This test is similar to the previous test
// except the emphasis is on testing the functionality of UpdateCoins
// random txs are created and UpdateCoins is used to update the cache stack
// In particular it is tested that spending a duplicate coinbase tx
// has the expected effect (the other duplicate is overwitten at all cache levels)
BOOST_AUTO_TEST_CASE(updatecoins_simulation_test)
{
    bool spent_a_duplicate_coinbase = false;
    // A simple map to track what we expect the cache stack to represent.
    std::map<uint256, CCoins> result;

    // The cache stack.
    CCoinsViewTest base; // A CCoinsViewTest at the bottom.
    std::vector<CCoinsViewCacheTest*> stack; // A stack of CCoinsViewCaches on top.
    stack.push_back(new CCoinsViewCacheTest(&base)); // Start with one cache.

    // Track the txids we've used and whether they have been spent or not
    std::map<uint256, CAmount> coinbaseids;
    std::set<uint256> alltxids;
    std::set<uint256> duplicateids;

    for (unsigned int i = 0; i < NUM_SIMULATION_ITERATIONS; i++) {
        {
            CMutableTransaction tx;
            tx.vin.resize(1);
            tx.vout.resize(1);
            tx.vout[0].nValue = i; //Keep txs unique unless intended to duplicate
            unsigned int height = insecure_rand();

            // 1/10 times create a coinbase
            if (insecure_rand() % 10 == 0 || coinbaseids.size() < 10) {
                // 1/100 times create a duplicate coinbase
                if (insecure_rand() % 10 == 0 && coinbaseids.size()) {
                    std::map<uint256, CAmount>::iterator coinbaseIt = coinbaseids.lower_bound(GetRandHash());
                    if (coinbaseIt == coinbaseids.end()) {
                        coinbaseIt = coinbaseids.begin();
                    }
                    //Use same random value to have same hash and be a true duplicate
                    tx.vout[0].nValue = coinbaseIt->second;
                    assert(tx.GetHash() == coinbaseIt->first);
                    duplicateids.insert(coinbaseIt->first);
                }
                else {
                    coinbaseids[tx.GetHash()] = tx.vout[0].nValue;
                }
                assert(CTransaction(tx).IsCoinBase());
            }
            // 9/10 times create a regular tx
            else {
                uint256 prevouthash;
                // equally likely to spend coinbase or non coinbase
                std::set<uint256>::iterator txIt = alltxids.lower_bound(GetRandHash());
                if (txIt == alltxids.end()) {
                    txIt = alltxids.begin();
                }
                prevouthash = *txIt;

                // Construct the tx to spend the coins of prevouthash
                tx.vin[0].prevout.hash = prevouthash;
                tx.vin[0].prevout.n = 0;

                // Update the expected result of prevouthash to know these coins are spent
                CCoins& oldcoins = result[prevouthash];
                oldcoins.Clear();

                // It is of particular importance here that once we spend a coinbase tx hash
                // it is no longer available to be duplicated (or spent again)
                // BIP 34 in conjunction with enforcing BIP 30 (at least until BIP 34 was active)
                // results in the fact that no coinbases were duplicated after they were already spent
                alltxids.erase(prevouthash);
                coinbaseids.erase(prevouthash);

                // The test is designed to ensure spending a duplicate coinbase will work properly
                // if that ever happens and not resurrect the previously overwritten coinbase
                if (duplicateids.count(prevouthash))
                    spent_a_duplicate_coinbase = true;

                assert(!CTransaction(tx).IsCoinBase());
            }
            // Track this tx to possibly spend later
            alltxids.insert(tx.GetHash());

            // Update the expected result to know about the new output coins
            CCoins &coins = result[tx.GetHash()];
            coins.FromTx(tx, height);

            UpdateCoins(tx, *(stack.back()), height);
        }

        // Once every 1000 iterations and at the end, verify the full cache.
        if (insecure_rand() % 1000 == 1 || i == NUM_SIMULATION_ITERATIONS - 1) {
            for (std::map<uint256, CCoins>::iterator it = result.begin(); it != result.end(); it++) {
                const CCoins* coins = stack.back()->AccessCoins(it->first);
                if (coins) {
                    BOOST_CHECK(*coins == it->second);
                 } else {
                    BOOST_CHECK(it->second.IsPruned());
                 }
            }
        }

        if (insecure_rand() % 100 == 0) {
            // Every 100 iterations, flush an intermediate cache
            if (stack.size() > 1 && insecure_rand() % 2 == 0) {
                unsigned int flushIndex = insecure_rand() % (stack.size() - 1);
                stack[flushIndex]->Flush();
            }
        }
        if (insecure_rand() % 100 == 0) {
            // Every 100 iterations, change the cache stack.
            if (stack.size() > 0 && insecure_rand() % 2 == 0) {
                stack.back()->Flush();
                delete stack.back();
                stack.pop_back();
            }
            if (stack.size() == 0 || (stack.size() < 4 && insecure_rand() % 2)) {
                CCoinsView* tip = &base;
                if (stack.size() > 0) {
                    tip = stack.back();
                }
                stack.push_back(new CCoinsViewCacheTest(tip));
           }
        }
    }

    // Clean up the stack.
    while (stack.size() > 0) {
        delete stack.back();
        stack.pop_back();
    }

    // Verify coverage.
    BOOST_CHECK(spent_a_duplicate_coinbase);
}

BOOST_AUTO_TEST_CASE(ccoins_serialization)
{
    // Good example
    CDataStream ss1(ParseHex("0104835800816115944e077fe7c803cfa57f29b36bf87c1d358bb85e"), SER_DISK, CLIENT_VERSION);
    CCoins cc1;
    ss1 >> cc1;
    BOOST_CHECK_EQUAL(cc1.nVersion, 1);
    BOOST_CHECK_EQUAL(cc1.fCoinBase, false);
    BOOST_CHECK_EQUAL(cc1.nHeight, 203998);
    BOOST_CHECK_EQUAL(cc1.vout.size(), 2);
    BOOST_CHECK_EQUAL(cc1.IsAvailable(0), false);
    BOOST_CHECK_EQUAL(cc1.IsAvailable(1), true);
    BOOST_CHECK_EQUAL(cc1.vout[1].nValue, 60000000000ULL);
    BOOST_CHECK_EQUAL(HexStr(cc1.vout[1].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("816115944e077fe7c803cfa57f29b36bf87c1d35"))))));

    // Good example
    CDataStream ss2(ParseHex("0109044086ef97d5790061b01caab50f1b8e9c50a5057eb43c2d9563a4eebbd123008c988f1a4a4de2161e0f50aac7f17e7f9555caa486af3b"), SER_DISK, CLIENT_VERSION);
    CCoins cc2;
    ss2 >> cc2;
    BOOST_CHECK_EQUAL(cc2.nVersion, 1);
    BOOST_CHECK_EQUAL(cc2.fCoinBase, true);
    BOOST_CHECK_EQUAL(cc2.nHeight, 120891);
    BOOST_CHECK_EQUAL(cc2.vout.size(), 17);
    for (int i = 0; i < 17; i++) {
        BOOST_CHECK_EQUAL(cc2.IsAvailable(i), i == 4 || i == 16);
    }
    BOOST_CHECK_EQUAL(cc2.vout[4].nValue, 234925952);
    BOOST_CHECK_EQUAL(HexStr(cc2.vout[4].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("61b01caab50f1b8e9c50a5057eb43c2d9563a4ee"))))));
    BOOST_CHECK_EQUAL(cc2.vout[16].nValue, 110397);
    BOOST_CHECK_EQUAL(HexStr(cc2.vout[16].scriptPubKey), HexStr(GetScriptForDestination(CKeyID(uint160(ParseHex("8c988f1a4a4de2161e0f50aac7f17e7f9555caa4"))))));

    // Smallest possible example
    CDataStream ssx(SER_DISK, CLIENT_VERSION);
    BOOST_CHECK_EQUAL(HexStr(ssx.begin(), ssx.end()), "");

    CDataStream ss3(ParseHex("0002000600"), SER_DISK, CLIENT_VERSION);
    CCoins cc3;
    ss3 >> cc3;
    BOOST_CHECK_EQUAL(cc3.nVersion, 0);
    BOOST_CHECK_EQUAL(cc3.fCoinBase, false);
    BOOST_CHECK_EQUAL(cc3.nHeight, 0);
    BOOST_CHECK_EQUAL(cc3.vout.size(), 1);
    BOOST_CHECK_EQUAL(cc3.IsAvailable(0), true);
    BOOST_CHECK_EQUAL(cc3.vout[0].nValue, 0);
    BOOST_CHECK_EQUAL(cc3.vout[0].scriptPubKey.size(), 0);

    // scriptPubKey that ends beyond the end of the stream
    CDataStream ss4(ParseHex("0002000800"), SER_DISK, CLIENT_VERSION);
    try {
        CCoins cc4;
        ss4 >> cc4;
        BOOST_CHECK_MESSAGE(false, "We should have thrown");
    } catch (const std::ios_base::failure& e) {
    }

    // Very large scriptPubKey (3*10^9 bytes) past the end of the stream
    CDataStream tmp(SER_DISK, CLIENT_VERSION);
    uint64_t x = 3000000000ULL;
    tmp << VARINT(x);
    BOOST_CHECK_EQUAL(HexStr(tmp.begin(), tmp.end()), "8a95c0bb00");
    CDataStream ss5(ParseHex("0002008a95c0bb0000"), SER_DISK, CLIENT_VERSION);
    try {
        CCoins cc5;
        ss5 >> cc5;
        BOOST_CHECK_MESSAGE(false, "We should have thrown");
    } catch (const std::ios_base::failure& e) {
    }
}

BOOST_AUTO_TEST_SUITE_END()