aboutsummaryrefslogtreecommitdiff
path: root/src/test.cpp
blob: 417937ea5f6b4b85a31f240b41d0e9ec786be0f2 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
/**********************************************************************
 * Copyright (c) 2018,2021 Pieter Wuille, Greg Maxwell, Gleb Naumenko *
 * Distributed under the MIT software license, see the accompanying   *
 * file LICENSE or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#include <algorithm>
#include <cstdio>
#include <limits>
#include <random>
#include <stdexcept>
#include <vector>

#include "../include/minisketch.h"
#include "util.h"

namespace {

uint64_t Combination(uint64_t n, uint64_t k) {
    if (n - k < k) k = n - k;
    uint64_t ret = 1;
    for (uint64_t i = 1; i <= k; ++i) {
        ret = (ret * n) / i;
        --n;
    }
    return ret;
}

/** Create a vector with Minisketch objects, one for each implementation. */
std::vector<Minisketch> CreateSketches(uint32_t bits, size_t capacity) {
    if (!Minisketch::BitsSupported(bits)) return {};
    std::vector<Minisketch> ret;
    for (uint32_t impl = 0; impl <= Minisketch::MaxImplementation(); ++impl) {
        if (Minisketch::ImplementationSupported(bits, impl)) {
            CHECK(Minisketch::BitsSupported(bits));
            ret.push_back(Minisketch(bits, impl, capacity));
            CHECK((bool)ret.back());
        } else {
            // implementation 0 must always work unless field size is disabled
            CHECK(impl != 0 || !Minisketch::BitsSupported(bits));
        }
    }
    return ret;
}

/** Test properties by exhaustively decoding all 2**(bits*capacity) sketches
 *  with specified capacity and bits. */
void TestExhaustive(uint32_t bits, size_t capacity) {
    auto sketches = CreateSketches(bits, capacity);
    if (sketches.empty()) return;
    auto sketches_rebuild = CreateSketches(bits, capacity);

    std::vector<unsigned char> serialized;
    std::vector<unsigned char> serialized_empty;
    std::vector<uint64_t> counts; //!< counts[i] = number of results with i elements
    std::vector<uint64_t> elements_0; //!< Result vector for elements for impl=0
    std::vector<uint64_t> elements_other; //!< Result vector for elements for other impls
    std::vector<uint64_t> elements_too_small; //!< Result vector that's too small

    counts.resize(capacity + 1);
    serialized.resize(sketches[0].GetSerializedSize());
    serialized_empty.resize(sketches[0].GetSerializedSize());

    // Iterate over all (bits)-bit sketches with (capacity) syndromes.
    for (uint64_t x = 0; (x >> (bits * capacity)) == 0; ++x) {
        // Construct the serialization.
        for (size_t i = 0; i < serialized.size(); ++i) {
            serialized[i] = (x >> (i * 8)) & 0xFF;
        }

        // Compute all the solutions
        sketches[0].Deserialize(serialized);
        elements_0.resize(64);
        bool decodable_0 = sketches[0].Decode(elements_0);
        std::sort(elements_0.begin(), elements_0.end());

        // Verify that decoding with other implementations agrees.
        for (size_t impl = 1; impl < sketches.size(); ++impl) {
            sketches[impl].Deserialize(serialized);
            elements_other.resize(64);
            bool decodable_other = sketches[impl].Decode(elements_other);
            CHECK(decodable_other == decodable_0);
            std::sort(elements_other.begin(), elements_other.end());
            CHECK(elements_other == elements_0);
        }

        // If there are solutions:
        if (decodable_0) {
            if (!elements_0.empty()) {
                // Decoding with limit one less than the number of elements should fail.
                elements_too_small.resize(elements_0.size() - 1);
                for (size_t impl = 0; impl < sketches.size(); ++impl) {
                    CHECK(!sketches[impl].Decode(elements_too_small));
                }
            }

            // Reconstruct the sketch from the solutions.
            for (size_t impl = 0; impl < sketches.size(); ++impl) {
                // Clear the sketch.
                sketches_rebuild[impl].Deserialize(serialized_empty);
                // Load all decoded elements into it.
                for (uint64_t elem : elements_0) {
                    CHECK(elem != 0);
                    CHECK(elem >> bits == 0);
                    sketches_rebuild[impl].Add(elem);
                }
                // Reserialize the result
                auto serialized_rebuild = sketches_rebuild[impl].Serialize();
                // Compare
                CHECK(serialized == serialized_rebuild);
                // Count it
                if (impl == 0 && elements_0.size() <= capacity) ++counts[elements_0.size()];
            }
        }
    }

    // Verify that the number of decodable sketches with given elements is expected.
    uint64_t mask = bits == 64 ? UINT64_MAX : (uint64_t{1} << bits) - 1;
    for (uint64_t i = 0; i <= capacity && (i & mask) == i; ++i) {
        CHECK(counts[i] == Combination(mask, i));
    }
}

/** Test properties of sketches with random elements put in. */
void TestRandomized(uint32_t bits, size_t max_capacity, size_t iter) {
    std::random_device rnd;
    std::uniform_int_distribution<uint64_t> capacity_dist(0, std::min<uint64_t>(std::numeric_limits<uint64_t>::max() >> (64 - bits), max_capacity));
    std::uniform_int_distribution<uint64_t> element_dist(1, std::numeric_limits<uint64_t>::max() >> (64 - bits));
    std::uniform_int_distribution<uint64_t> rand64(0, std::numeric_limits<uint64_t>::max());
    std::uniform_int_distribution<int64_t> size_offset_dist(-3, 3);

    std::vector<uint64_t> decode_0;
    std::vector<uint64_t> decode_other;
    std::vector<uint64_t> decode_temp;
    std::vector<uint64_t> elements;

    for (size_t i = 0; i < iter; ++i) {
        // Determine capacity, and construct Minisketch objects for all implementations.
        uint64_t capacity = capacity_dist(rnd);
        auto sketches = CreateSketches(bits, capacity);
        // Sanity checks
        if (sketches.empty()) return;
        for (size_t impl = 0; impl < sketches.size(); ++impl) {
            CHECK(sketches[impl].GetBits() == bits);
            CHECK(sketches[impl].GetCapacity() == capacity);
            CHECK(sketches[impl].GetSerializedSize() == sketches[0].GetSerializedSize());
        }
        // Determine the number of elements, and create a vector to store them in.
        size_t element_count = std::max<int64_t>(0, std::max<int64_t>(0, capacity + size_offset_dist(rnd)));
        elements.resize(element_count);
        // Add the elements to all sketches
        for (size_t j = 0; j < element_count; ++j) {
            uint64_t elem = element_dist(rnd);
            CHECK(elem != 0);
            elements[j] = elem;
            for (auto& sketch : sketches) sketch.Add(elem);
        }
        // Remove pairs of duplicates in elements, as they cancel out.
        std::sort(elements.begin(), elements.end());
        size_t real_element_count = element_count;
        for (size_t pos = 0; pos + 1 < elements.size(); ++pos) {
            if (elements[pos] == elements[pos + 1]) {
                real_element_count -= 2;
                // Set both elements to 0; afterwards we will move these to the end.
                elements[pos] = 0;
                elements[pos + 1] = 0;
                ++pos;
            }
        }
        if (real_element_count < element_count) {
            // Move all introduced zeroes (masking duplicates) to the end.
            std::sort(elements.begin(), elements.end(), [](uint64_t a, uint64_t b) { return a != b && (b == 0 || (a != 0 && a < b)); });
            CHECK(elements[real_element_count] == 0);
            elements.resize(real_element_count);
        }
        // Create and compare serializations
        auto serialized_0 = sketches[0].Serialize();
        for (size_t impl = 1; impl < sketches.size(); ++impl) {
            auto serialized_other = sketches[impl].Serialize();
            CHECK(serialized_other == serialized_0);
        }
        // Deserialize and reserialize them
        for (size_t impl = 0; impl < sketches.size(); ++impl) {
            sketches[impl].Deserialize(serialized_0);
            auto reserialized = sketches[impl].Serialize();
            CHECK(reserialized == serialized_0);
        }
        // Decode with limit set to the capacity, and compare results
        decode_0.resize(capacity);
        bool decodable_0 = sketches[0].Decode(decode_0);
        std::sort(decode_0.begin(), decode_0.end());
        for (size_t impl = 1; impl < sketches.size(); ++impl) {
            decode_other.resize(capacity);
            bool decodable_other = sketches[impl].Decode(decode_other);
            CHECK(decodable_other == decodable_0);
            std::sort(decode_other.begin(), decode_other.end());
            CHECK(decode_other == decode_0);
        }
        // If the result is decodable, it should also be decodable with limit
        // set to the actual number of elements, and not with one less.
        if (decodable_0) {
            for (auto& sketch : sketches) {
                decode_temp.resize(decode_0.size());
                bool decodable = sketch.Decode(decode_temp);
                CHECK(decodable);
                std::sort(decode_temp.begin(), decode_temp.end());
                CHECK(decode_temp == decode_0);
                if (!decode_0.empty()) {
                    decode_temp.resize(decode_0.size() - 1);
                    decodable = sketch.Decode(decode_temp);
                    CHECK(!decodable);
                }
            }
        }
        // If the actual number of elements is not higher than the capacity, the
        // result should be decodable, and the result should match what we put in.
        if (real_element_count <= capacity) {
            CHECK(decodable_0);
            CHECK(decode_0 == elements);
        }
    }
}

void TestComputeFunctions() {
    for (uint32_t bits = 0; bits <= 256; ++bits) {
        for (uint32_t fpbits = 0; fpbits <= 512; ++fpbits) {
            std::vector<size_t> table_max_elements(1025);
            for (size_t capacity = 0; capacity <= 1024; ++capacity) {
                table_max_elements[capacity] = minisketch_compute_max_elements(bits, capacity, fpbits);
                // Exception for bits==0
                if (bits == 0) CHECK(table_max_elements[capacity] == 0);
                // A sketch with capacity N cannot guarantee decoding more than N elements.
                CHECK(table_max_elements[capacity] <= capacity);
                // When asking for N bits of false positive protection, either no solution exists, or no more than ceil(N / bits) excess capacity should be needed.
                if (bits > 0) CHECK(table_max_elements[capacity] == 0 || capacity - table_max_elements[capacity] <= (fpbits + bits - 1) / bits);
                // Increasing capacity by one, if there is a solution, should always increment the max_elements by at least one as well.
                if (capacity > 0) CHECK(table_max_elements[capacity] == 0 || table_max_elements[capacity] > table_max_elements[capacity - 1]);
            }

            std::vector<size_t> table_capacity(513);
            for (size_t max_elements = 0; max_elements <= 512; ++max_elements) {
                table_capacity[max_elements] = minisketch_compute_capacity(bits, max_elements, fpbits);
                // Exception for bits==0
                if (bits == 0) CHECK(table_capacity[max_elements] == 0);
                // To be able to decode N elements, capacity needs to be at least N.
                if (bits > 0) CHECK(table_capacity[max_elements] >= max_elements);
                // A sketch of N bits in total cannot have more than N bits of false positive protection;
                if (bits > 0) CHECK(bits * table_capacity[max_elements] >= fpbits);
                // When asking for N bits of false positive protection, no more than ceil(N / bits) excess capacity should be needed.
                if (bits > 0) CHECK(table_capacity[max_elements] - max_elements <= (fpbits + bits - 1) / bits);
                // Increasing max_elements by one can only increment the capacity by 0 or 1.
                if (max_elements > 0 && fpbits < 256) CHECK(table_capacity[max_elements] == table_capacity[max_elements - 1] || table_capacity[max_elements] == table_capacity[max_elements - 1] + 1);
                // Check round-tripping max_elements->capacity->max_elements (only a lower bound)
                CHECK(table_capacity[max_elements] <= 1024);
                CHECK(table_max_elements[table_capacity[max_elements]] == 0 || table_max_elements[table_capacity[max_elements]] >= max_elements);
            }

            for (size_t capacity = 0; capacity <= 512; ++capacity) {
                // Check round-tripping capacity->max_elements->capacity (exact, if it exists)
                CHECK(table_max_elements[capacity] <= 512);
                CHECK(table_max_elements[capacity] == 0 || table_capacity[table_max_elements[capacity]] == capacity);
            }
        }
    }
}

} // namespace

int main(int argc, char** argv) {
    uint64_t test_complexity = 4;
    if (argc > 1) {
        size_t len = 0;
        std::string arg{argv[1]};
        try {
            test_complexity = 0;
            long long complexity = std::stoll(arg, &len);
            if (complexity >= 1 && len == arg.size() && ((uint64_t)complexity <= std::numeric_limits<uint64_t>::max() >> 10)) {
                test_complexity = complexity;
            }
        } catch (const std::logic_error&) {}
        if (test_complexity == 0) {
            fprintf(stderr, "Invalid complexity specified: '%s'\n", arg.c_str());
            return 1;
        }
    }

#ifdef MINISKETCH_VERIFY
    const char* mode = " in verify mode";
#else
    const char* mode = "";
#endif
    printf("Running libminisketch tests%s with complexity=%llu\n", mode, (unsigned long long)test_complexity);

    TestComputeFunctions();

    for (unsigned j = 2; j <= 64; ++j) {
        TestRandomized(j, 8, (test_complexity << 10) / j);
        TestRandomized(j, 128, (test_complexity << 7) / j);
        TestRandomized(j, 4096, test_complexity / j);
    }

    // Test capacity==0 together with all field sizes, and then
    // all combinations of bits and capacity up to a certain bits*capacity,
    // depending on test_complexity.
    for (int weight = 0; weight <= 40; ++weight) {
        for (int bits = 2; weight == 0 ? bits <= 64 : (bits <= 32 && bits <= weight); ++bits) {
            int capacity = weight / bits;
            if (capacity * bits != weight) continue;
            TestExhaustive(bits, capacity);
        }
        if (weight >= 16 && test_complexity >> (weight - 16) == 0) break;
    }

    printf("All tests successful.\n");
    return 0;
}