aboutsummaryrefslogtreecommitdiff
path: root/src/serialize.h
blob: 35519056a5d2f4f97d3510d47b5effb0346219c5 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2022 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifndef BITCOIN_SERIALIZE_H
#define BITCOIN_SERIALIZE_H

#include <attributes.h>
#include <compat/assumptions.h> // IWYU pragma: keep
#include <compat/endian.h>
#include <prevector.h>
#include <span.h>

#include <algorithm>
#include <concepts>
#include <cstdint>
#include <cstring>
#include <ios>
#include <limits>
#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>

/**
 * The maximum size of a serialized object in bytes or number of elements
 * (for eg vectors) when the size is encoded as CompactSize.
 */
static constexpr uint64_t MAX_SIZE = 0x02000000;

/** Maximum amount of memory (in bytes) to allocate at once when deserializing vectors. */
static const unsigned int MAX_VECTOR_ALLOCATE = 5000000;

/**
 * Dummy data type to identify deserializing constructors.
 *
 * By convention, a constructor of a type T with signature
 *
 *   template <typename Stream> T::T(deserialize_type, Stream& s)
 *
 * is a deserializing constructor, which builds the type by
 * deserializing it from s. If T contains const fields, this
 * is likely the only way to do so.
 */
struct deserialize_type {};
constexpr deserialize_type deserialize {};

/*
 * Lowest-level serialization and conversion.
 */
template<typename Stream> inline void ser_writedata8(Stream &s, uint8_t obj)
{
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16(Stream &s, uint16_t obj)
{
    obj = htole16_internal(obj);
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata16be(Stream &s, uint16_t obj)
{
    obj = htobe16_internal(obj);
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32(Stream &s, uint32_t obj)
{
    obj = htole32_internal(obj);
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata32be(Stream &s, uint32_t obj)
{
    obj = htobe32_internal(obj);
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline void ser_writedata64(Stream &s, uint64_t obj)
{
    obj = htole64_internal(obj);
    s.write(AsBytes(Span{&obj, 1}));
}
template<typename Stream> inline uint8_t ser_readdata8(Stream &s)
{
    uint8_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return obj;
}
template<typename Stream> inline uint16_t ser_readdata16(Stream &s)
{
    uint16_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return le16toh_internal(obj);
}
template<typename Stream> inline uint16_t ser_readdata16be(Stream &s)
{
    uint16_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return be16toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32(Stream &s)
{
    uint32_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return le32toh_internal(obj);
}
template<typename Stream> inline uint32_t ser_readdata32be(Stream &s)
{
    uint32_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return be32toh_internal(obj);
}
template<typename Stream> inline uint64_t ser_readdata64(Stream &s)
{
    uint64_t obj;
    s.read(AsWritableBytes(Span{&obj, 1}));
    return le64toh_internal(obj);
}


class SizeComputer;

/**
 * Convert any argument to a reference to X, maintaining constness.
 *
 * This can be used in serialization code to invoke a base class's
 * serialization routines.
 *
 * Example use:
 *   class Base { ... };
 *   class Child : public Base {
 *     int m_data;
 *   public:
 *     SERIALIZE_METHODS(Child, obj) {
 *       READWRITE(AsBase<Base>(obj), obj.m_data);
 *     }
 *   };
 *
 * static_cast cannot easily be used here, as the type of Obj will be const Child&
 * during serialization and Child& during deserialization. AsBase will convert to
 * const Base& and Base& appropriately.
 */
template <class Out, class In>
Out& AsBase(In& x)
{
    static_assert(std::is_base_of_v<Out, In>);
    return x;
}
template <class Out, class In>
const Out& AsBase(const In& x)
{
    static_assert(std::is_base_of_v<Out, In>);
    return x;
}

#define READWRITE(...) (ser_action.SerReadWriteMany(s, __VA_ARGS__))
#define SER_READ(obj, code) ser_action.SerRead(s, obj, [&](Stream& s, typename std::remove_const<Type>::type& obj) { code; })
#define SER_WRITE(obj, code) ser_action.SerWrite(s, obj, [&](Stream& s, const Type& obj) { code; })

/**
 * Implement the Ser and Unser methods needed for implementing a formatter (see Using below).
 *
 * Both Ser and Unser are delegated to a single static method SerializationOps, which is polymorphic
 * in the serialized/deserialized type (allowing it to be const when serializing, and non-const when
 * deserializing).
 *
 * Example use:
 *   struct FooFormatter {
 *     FORMATTER_METHODS(Class, obj) { READWRITE(obj.val1, VARINT(obj.val2)); }
 *   }
 *   would define a class FooFormatter that defines a serialization of Class objects consisting
 *   of serializing its val1 member using the default serialization, and its val2 member using
 *   VARINT serialization. That FooFormatter can then be used in statements like
 *   READWRITE(Using<FooFormatter>(obj.bla)).
 */
#define FORMATTER_METHODS(cls, obj) \
    template<typename Stream> \
    static void Ser(Stream& s, const cls& obj) { SerializationOps(obj, s, ActionSerialize{}); } \
    template<typename Stream> \
    static void Unser(Stream& s, cls& obj) { SerializationOps(obj, s, ActionUnserialize{}); } \
    template<typename Stream, typename Type, typename Operation> \
    static void SerializationOps(Type& obj, Stream& s, Operation ser_action)

/**
 * Formatter methods can retrieve parameters attached to a stream using the
 * SER_PARAMS(type) macro as long as the stream is created directly or
 * indirectly with a parameter of that type. This permits making serialization
 * depend on run-time context in a type-safe way.
 *
 * Example use:
 *   struct BarParameter { bool fancy; ... };
 *   struct Bar { ... };
 *   struct FooFormatter {
 *     FORMATTER_METHODS(Bar, obj) {
 *       auto& param = SER_PARAMS(BarParameter);
 *       if (param.fancy) {
 *         READWRITE(VARINT(obj.value));
 *       } else {
 *         READWRITE(obj.value);
 *       }
 *     }
 *   };
 * which would then be invoked as
 *   READWRITE(BarParameter{...}(Using<FooFormatter>(obj.foo)))
 *
 * parameter(obj) can be invoked anywhere in the call stack; it is
 * passed down recursively into all serialization code, until another
 * serialization parameter overrides it.
 *
 * Parameters will be implicitly converted where appropriate. This means that
 * "parent" serialization code can use a parameter that derives from, or is
 * convertible to, a "child" formatter's parameter type.
 *
 * Compilation will fail in any context where serialization is invoked but
 * no parameter of a type convertible to BarParameter is provided.
 */
#define SER_PARAMS(type) (s.template GetParams<type>())

#define BASE_SERIALIZE_METHODS(cls)                                                                 \
    template <typename Stream>                                                                      \
    void Serialize(Stream& s) const                                                                 \
    {                                                                                               \
        static_assert(std::is_same<const cls&, decltype(*this)>::value, "Serialize type mismatch"); \
        Ser(s, *this);                                                                              \
    }                                                                                               \
    template <typename Stream>                                                                      \
    void Unserialize(Stream& s)                                                                     \
    {                                                                                               \
        static_assert(std::is_same<cls&, decltype(*this)>::value, "Unserialize type mismatch");     \
        Unser(s, *this);                                                                            \
    }

/**
 * Implement the Serialize and Unserialize methods by delegating to a single templated
 * static method that takes the to-be-(de)serialized object as a parameter. This approach
 * has the advantage that the constness of the object becomes a template parameter, and
 * thus allows a single implementation that sees the object as const for serializing
 * and non-const for deserializing, without casts.
 */
#define SERIALIZE_METHODS(cls, obj) \
    BASE_SERIALIZE_METHODS(cls)     \
    FORMATTER_METHODS(cls, obj)

// Templates for serializing to anything that looks like a stream,
// i.e. anything that supports .read(Span<std::byte>) and .write(Span<const std::byte>)
//
// clang-format off

// Typically int8_t and char are distinct types, but some systems may define int8_t
// in terms of char. Forbid serialization of char in the typical case, but allow it if
// it's the only way to describe an int8_t.
template<class T>
concept CharNotInt8 = std::same_as<T, char> && !std::same_as<T, int8_t>;

template <typename Stream, CharNotInt8 V> void Serialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Serialize(Stream& s, std::byte a) { ser_writedata8(s, uint8_t(a)); }
template<typename Stream> inline void Serialize(Stream& s, int8_t a  ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint8_t a ) { ser_writedata8(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int16_t a ) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint16_t a) { ser_writedata16(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int32_t a ) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint32_t a) { ser_writedata32(s, a); }
template<typename Stream> inline void Serialize(Stream& s, int64_t a ) { ser_writedata64(s, a); }
template<typename Stream> inline void Serialize(Stream& s, uint64_t a) { ser_writedata64(s, a); }
template <typename Stream, BasicByte B, int N> void Serialize(Stream& s, const B (&a)[N]) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Serialize(Stream& s, const std::array<B, N>& a) { s.write(MakeByteSpan(a)); }
template <typename Stream, BasicByte B> void Serialize(Stream& s, Span<B> span) { s.write(AsBytes(span)); }

template <typename Stream, CharNotInt8 V> void Unserialize(Stream&, V) = delete; // char serialization forbidden. Use uint8_t or int8_t
template <typename Stream> void Unserialize(Stream& s, std::byte& a) { a = std::byte{ser_readdata8(s)}; }
template<typename Stream> inline void Unserialize(Stream& s, int8_t& a  ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint8_t& a ) { a = ser_readdata8(s); }
template<typename Stream> inline void Unserialize(Stream& s, int16_t& a ) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint16_t& a) { a = ser_readdata16(s); }
template<typename Stream> inline void Unserialize(Stream& s, int32_t& a ) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint32_t& a) { a = ser_readdata32(s); }
template<typename Stream> inline void Unserialize(Stream& s, int64_t& a ) { a = ser_readdata64(s); }
template<typename Stream> inline void Unserialize(Stream& s, uint64_t& a) { a = ser_readdata64(s); }
template <typename Stream, BasicByte B, int N> void Unserialize(Stream& s, B (&a)[N]) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B, std::size_t N> void Unserialize(Stream& s, std::array<B, N>& a) { s.read(MakeWritableByteSpan(a)); }
template <typename Stream, BasicByte B> void Unserialize(Stream& s, Span<B> span) { s.read(AsWritableBytes(span)); }

template <typename Stream> inline void Serialize(Stream& s, bool a) { uint8_t f = a; ser_writedata8(s, f); }
template <typename Stream> inline void Unserialize(Stream& s, bool& a) { uint8_t f = ser_readdata8(s); a = f; }
// clang-format on


/**
 * Compact Size
 * size <  253        -- 1 byte
 * size <= USHRT_MAX  -- 3 bytes  (253 + 2 bytes)
 * size <= UINT_MAX   -- 5 bytes  (254 + 4 bytes)
 * size >  UINT_MAX   -- 9 bytes  (255 + 8 bytes)
 */
constexpr inline unsigned int GetSizeOfCompactSize(uint64_t nSize)
{
    if (nSize < 253)             return sizeof(unsigned char);
    else if (nSize <= std::numeric_limits<uint16_t>::max()) return sizeof(unsigned char) + sizeof(uint16_t);
    else if (nSize <= std::numeric_limits<unsigned int>::max())  return sizeof(unsigned char) + sizeof(unsigned int);
    else                         return sizeof(unsigned char) + sizeof(uint64_t);
}

inline void WriteCompactSize(SizeComputer& os, uint64_t nSize);

template<typename Stream>
void WriteCompactSize(Stream& os, uint64_t nSize)
{
    if (nSize < 253)
    {
        ser_writedata8(os, nSize);
    }
    else if (nSize <= std::numeric_limits<uint16_t>::max())
    {
        ser_writedata8(os, 253);
        ser_writedata16(os, nSize);
    }
    else if (nSize <= std::numeric_limits<unsigned int>::max())
    {
        ser_writedata8(os, 254);
        ser_writedata32(os, nSize);
    }
    else
    {
        ser_writedata8(os, 255);
        ser_writedata64(os, nSize);
    }
    return;
}

/**
 * Decode a CompactSize-encoded variable-length integer.
 *
 * As these are primarily used to encode the size of vector-like serializations, by default a range
 * check is performed. When used as a generic number encoding, range_check should be set to false.
 */
template<typename Stream>
uint64_t ReadCompactSize(Stream& is, bool range_check = true)
{
    uint8_t chSize = ser_readdata8(is);
    uint64_t nSizeRet = 0;
    if (chSize < 253)
    {
        nSizeRet = chSize;
    }
    else if (chSize == 253)
    {
        nSizeRet = ser_readdata16(is);
        if (nSizeRet < 253)
            throw std::ios_base::failure("non-canonical ReadCompactSize()");
    }
    else if (chSize == 254)
    {
        nSizeRet = ser_readdata32(is);
        if (nSizeRet < 0x10000u)
            throw std::ios_base::failure("non-canonical ReadCompactSize()");
    }
    else
    {
        nSizeRet = ser_readdata64(is);
        if (nSizeRet < 0x100000000ULL)
            throw std::ios_base::failure("non-canonical ReadCompactSize()");
    }
    if (range_check && nSizeRet > MAX_SIZE) {
        throw std::ios_base::failure("ReadCompactSize(): size too large");
    }
    return nSizeRet;
}

/**
 * Variable-length integers: bytes are a MSB base-128 encoding of the number.
 * The high bit in each byte signifies whether another digit follows. To make
 * sure the encoding is one-to-one, one is subtracted from all but the last digit.
 * Thus, the byte sequence a[] with length len, where all but the last byte
 * has bit 128 set, encodes the number:
 *
 *  (a[len-1] & 0x7F) + sum(i=1..len-1, 128^i*((a[len-i-1] & 0x7F)+1))
 *
 * Properties:
 * * Very small (0-127: 1 byte, 128-16511: 2 bytes, 16512-2113663: 3 bytes)
 * * Every integer has exactly one encoding
 * * Encoding does not depend on size of original integer type
 * * No redundancy: every (infinite) byte sequence corresponds to a list
 *   of encoded integers.
 *
 * 0:         [0x00]  256:        [0x81 0x00]
 * 1:         [0x01]  16383:      [0xFE 0x7F]
 * 127:       [0x7F]  16384:      [0xFF 0x00]
 * 128:  [0x80 0x00]  16511:      [0xFF 0x7F]
 * 255:  [0x80 0x7F]  65535: [0x82 0xFE 0x7F]
 * 2^32:           [0x8E 0xFE 0xFE 0xFF 0x00]
 */

/**
 * Mode for encoding VarInts.
 *
 * Currently there is no support for signed encodings. The default mode will not
 * compile with signed values, and the legacy "nonnegative signed" mode will
 * accept signed values, but improperly encode and decode them if they are
 * negative. In the future, the DEFAULT mode could be extended to support
 * negative numbers in a backwards compatible way, and additional modes could be
 * added to support different varint formats (e.g. zigzag encoding).
 */
enum class VarIntMode { DEFAULT, NONNEGATIVE_SIGNED };

template <VarIntMode Mode, typename I>
struct CheckVarIntMode {
    constexpr CheckVarIntMode()
    {
        static_assert(Mode != VarIntMode::DEFAULT || std::is_unsigned<I>::value, "Unsigned type required with mode DEFAULT.");
        static_assert(Mode != VarIntMode::NONNEGATIVE_SIGNED || std::is_signed<I>::value, "Signed type required with mode NONNEGATIVE_SIGNED.");
    }
};

template<VarIntMode Mode, typename I>
inline unsigned int GetSizeOfVarInt(I n)
{
    CheckVarIntMode<Mode, I>();
    int nRet = 0;
    while(true) {
        nRet++;
        if (n <= 0x7F)
            break;
        n = (n >> 7) - 1;
    }
    return nRet;
}

template<typename I>
inline void WriteVarInt(SizeComputer& os, I n);

template<typename Stream, VarIntMode Mode, typename I>
void WriteVarInt(Stream& os, I n)
{
    CheckVarIntMode<Mode, I>();
    unsigned char tmp[(sizeof(n)*8+6)/7];
    int len=0;
    while(true) {
        tmp[len] = (n & 0x7F) | (len ? 0x80 : 0x00);
        if (n <= 0x7F)
            break;
        n = (n >> 7) - 1;
        len++;
    }
    do {
        ser_writedata8(os, tmp[len]);
    } while(len--);
}

template<typename Stream, VarIntMode Mode, typename I>
I ReadVarInt(Stream& is)
{
    CheckVarIntMode<Mode, I>();
    I n = 0;
    while(true) {
        unsigned char chData = ser_readdata8(is);
        if (n > (std::numeric_limits<I>::max() >> 7)) {
           throw std::ios_base::failure("ReadVarInt(): size too large");
        }
        n = (n << 7) | (chData & 0x7F);
        if (chData & 0x80) {
            if (n == std::numeric_limits<I>::max()) {
                throw std::ios_base::failure("ReadVarInt(): size too large");
            }
            n++;
        } else {
            return n;
        }
    }
}

/** Simple wrapper class to serialize objects using a formatter; used by Using(). */
template<typename Formatter, typename T>
class Wrapper
{
    static_assert(std::is_lvalue_reference<T>::value, "Wrapper needs an lvalue reference type T");
protected:
    T m_object;
public:
    explicit Wrapper(T obj) : m_object(obj) {}
    template<typename Stream> void Serialize(Stream &s) const { Formatter().Ser(s, m_object); }
    template<typename Stream> void Unserialize(Stream &s) { Formatter().Unser(s, m_object); }
};

/** Cause serialization/deserialization of an object to be done using a specified formatter class.
 *
 * To use this, you need a class Formatter that has public functions Ser(stream, const object&) for
 * serialization, and Unser(stream, object&) for deserialization. Serialization routines (inside
 * READWRITE, or directly with << and >> operators), can then use Using<Formatter>(object).
 *
 * This works by constructing a Wrapper<Formatter, T>-wrapped version of object, where T is
 * const during serialization, and non-const during deserialization, which maintains const
 * correctness.
 */
template<typename Formatter, typename T>
static inline Wrapper<Formatter, T&> Using(T&& t) { return Wrapper<Formatter, T&>(t); }

#define VARINT_MODE(obj, mode) Using<VarIntFormatter<mode>>(obj)
#define VARINT(obj) Using<VarIntFormatter<VarIntMode::DEFAULT>>(obj)
#define COMPACTSIZE(obj) Using<CompactSizeFormatter<true>>(obj)
#define LIMITED_STRING(obj,n) Using<LimitedStringFormatter<n>>(obj)

/** Serialization wrapper class for integers in VarInt format. */
template<VarIntMode Mode>
struct VarIntFormatter
{
    template<typename Stream, typename I> void Ser(Stream &s, I v)
    {
        WriteVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s, v);
    }

    template<typename Stream, typename I> void Unser(Stream& s, I& v)
    {
        v = ReadVarInt<Stream,Mode,typename std::remove_cv<I>::type>(s);
    }
};

/** Serialization wrapper class for custom integers and enums.
 *
 * It permits specifying the serialized size (1 to 8 bytes) and endianness.
 *
 * Use the big endian mode for values that are stored in memory in native
 * byte order, but serialized in big endian notation. This is only intended
 * to implement serializers that are compatible with existing formats, and
 * its use is not recommended for new data structures.
 */
template<int Bytes, bool BigEndian = false>
struct CustomUintFormatter
{
    static_assert(Bytes > 0 && Bytes <= 8, "CustomUintFormatter Bytes out of range");
    static constexpr uint64_t MAX = 0xffffffffffffffff >> (8 * (8 - Bytes));

    template <typename Stream, typename I> void Ser(Stream& s, I v)
    {
        if (v < 0 || v > MAX) throw std::ios_base::failure("CustomUintFormatter value out of range");
        if (BigEndian) {
            uint64_t raw = htobe64_internal(v);
            s.write(AsBytes(Span{&raw, 1}).last(Bytes));
        } else {
            uint64_t raw = htole64_internal(v);
            s.write(AsBytes(Span{&raw, 1}).first(Bytes));
        }
    }

    template <typename Stream, typename I> void Unser(Stream& s, I& v)
    {
        using U = typename std::conditional<std::is_enum<I>::value, std::underlying_type<I>, std::common_type<I>>::type::type;
        static_assert(std::numeric_limits<U>::max() >= MAX && std::numeric_limits<U>::min() <= 0, "Assigned type too small");
        uint64_t raw = 0;
        if (BigEndian) {
            s.read(AsWritableBytes(Span{&raw, 1}).last(Bytes));
            v = static_cast<I>(be64toh_internal(raw));
        } else {
            s.read(AsWritableBytes(Span{&raw, 1}).first(Bytes));
            v = static_cast<I>(le64toh_internal(raw));
        }
    }
};

template<int Bytes> using BigEndianFormatter = CustomUintFormatter<Bytes, true>;

/** Formatter for integers in CompactSize format. */
template<bool RangeCheck>
struct CompactSizeFormatter
{
    template<typename Stream, typename I>
    void Unser(Stream& s, I& v)
    {
        uint64_t n = ReadCompactSize<Stream>(s, RangeCheck);
        if (n < std::numeric_limits<I>::min() || n > std::numeric_limits<I>::max()) {
            throw std::ios_base::failure("CompactSize exceeds limit of type");
        }
        v = n;
    }

    template<typename Stream, typename I>
    void Ser(Stream& s, I v)
    {
        static_assert(std::is_unsigned<I>::value, "CompactSize only supported for unsigned integers");
        static_assert(std::numeric_limits<I>::max() <= std::numeric_limits<uint64_t>::max(), "CompactSize only supports 64-bit integers and below");

        WriteCompactSize<Stream>(s, v);
    }
};

template <typename U, bool LOSSY = false>
struct ChronoFormatter {
    template <typename Stream, typename Tp>
    void Unser(Stream& s, Tp& tp)
    {
        U u;
        s >> u;
        // Lossy deserialization does not make sense, so force Wnarrowing
        tp = Tp{typename Tp::duration{typename Tp::duration::rep{u}}};
    }
    template <typename Stream, typename Tp>
    void Ser(Stream& s, Tp tp)
    {
        if constexpr (LOSSY) {
            s << U(tp.time_since_epoch().count());
        } else {
            s << U{tp.time_since_epoch().count()};
        }
    }
};
template <typename U>
using LossyChronoFormatter = ChronoFormatter<U, true>;

class CompactSizeWriter
{
protected:
    uint64_t n;
public:
    explicit CompactSizeWriter(uint64_t n_in) : n(n_in) { }

    template<typename Stream>
    void Serialize(Stream &s) const {
        WriteCompactSize<Stream>(s, n);
    }
};

template<size_t Limit>
struct LimitedStringFormatter
{
    template<typename Stream>
    void Unser(Stream& s, std::string& v)
    {
        size_t size = ReadCompactSize(s);
        if (size > Limit) {
            throw std::ios_base::failure("String length limit exceeded");
        }
        v.resize(size);
        if (size != 0) s.read(MakeWritableByteSpan(v));
    }

    template<typename Stream>
    void Ser(Stream& s, const std::string& v)
    {
        s << v;
    }
};

/** Formatter to serialize/deserialize vector elements using another formatter
 *
 * Example:
 *   struct X {
 *     std::vector<uint64_t> v;
 *     SERIALIZE_METHODS(X, obj) { READWRITE(Using<VectorFormatter<VarInt>>(obj.v)); }
 *   };
 * will define a struct that contains a vector of uint64_t, which is serialized
 * as a vector of VarInt-encoded integers.
 *
 * V is not required to be an std::vector type. It works for any class that
 * exposes a value_type, size, reserve, emplace_back, back, and const iterators.
 */
template<class Formatter>
struct VectorFormatter
{
    template<typename Stream, typename V>
    void Ser(Stream& s, const V& v)
    {
        Formatter formatter;
        WriteCompactSize(s, v.size());
        for (const typename V::value_type& elem : v) {
            formatter.Ser(s, elem);
        }
    }

    template<typename Stream, typename V>
    void Unser(Stream& s, V& v)
    {
        Formatter formatter;
        v.clear();
        size_t size = ReadCompactSize(s);
        size_t allocated = 0;
        while (allocated < size) {
            // For DoS prevention, do not blindly allocate as much as the stream claims to contain.
            // Instead, allocate in 5MiB batches, so that an attacker actually needs to provide
            // X MiB of data to make us allocate X+5 Mib.
            static_assert(sizeof(typename V::value_type) <= MAX_VECTOR_ALLOCATE, "Vector element size too large");
            allocated = std::min(size, allocated + MAX_VECTOR_ALLOCATE / sizeof(typename V::value_type));
            v.reserve(allocated);
            while (v.size() < allocated) {
                v.emplace_back();
                formatter.Unser(s, v.back());
            }
        }
    };
};

/**
 * Forward declarations
 */

/**
 *  string
 */
template<typename Stream, typename C> void Serialize(Stream& os, const std::basic_string<C>& str);
template<typename Stream, typename C> void Unserialize(Stream& is, std::basic_string<C>& str);

/**
 * prevector
 */
template<typename Stream, unsigned int N, typename T> inline void Serialize(Stream& os, const prevector<N, T>& v);
template<typename Stream, unsigned int N, typename T> inline void Unserialize(Stream& is, prevector<N, T>& v);

/**
 * vector
 */
template<typename Stream, typename T, typename A> inline void Serialize(Stream& os, const std::vector<T, A>& v);
template<typename Stream, typename T, typename A> inline void Unserialize(Stream& is, std::vector<T, A>& v);

/**
 * pair
 */
template<typename Stream, typename K, typename T> void Serialize(Stream& os, const std::pair<K, T>& item);
template<typename Stream, typename K, typename T> void Unserialize(Stream& is, std::pair<K, T>& item);

/**
 * map
 */
template<typename Stream, typename K, typename T, typename Pred, typename A> void Serialize(Stream& os, const std::map<K, T, Pred, A>& m);
template<typename Stream, typename K, typename T, typename Pred, typename A> void Unserialize(Stream& is, std::map<K, T, Pred, A>& m);

/**
 * set
 */
template<typename Stream, typename K, typename Pred, typename A> void Serialize(Stream& os, const std::set<K, Pred, A>& m);
template<typename Stream, typename K, typename Pred, typename A> void Unserialize(Stream& is, std::set<K, Pred, A>& m);

/**
 * shared_ptr
 */
template<typename Stream, typename T> void Serialize(Stream& os, const std::shared_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::shared_ptr<const T>& p);

/**
 * unique_ptr
 */
template<typename Stream, typename T> void Serialize(Stream& os, const std::unique_ptr<const T>& p);
template<typename Stream, typename T> void Unserialize(Stream& os, std::unique_ptr<const T>& p);


/**
 * If none of the specialized versions above matched, default to calling member function.
 */
template <class T, class Stream>
concept Serializable = requires(T a, Stream s) { a.Serialize(s); };
template <typename Stream, typename T>
    requires Serializable<T, Stream>
void Serialize(Stream& os, const T& a)
{
    a.Serialize(os);
}

template <class T, class Stream>
concept Unserializable = requires(T a, Stream s) { a.Unserialize(s); };
template <typename Stream, typename T>
    requires Unserializable<T, Stream>
void Unserialize(Stream& is, T&& a)
{
    a.Unserialize(is);
}

/** Default formatter. Serializes objects as themselves.
 *
 * The vector/prevector serialization code passes this to VectorFormatter
 * to enable reusing that logic. It shouldn't be needed elsewhere.
 */
struct DefaultFormatter
{
    template<typename Stream, typename T>
    static void Ser(Stream& s, const T& t) { Serialize(s, t); }

    template<typename Stream, typename T>
    static void Unser(Stream& s, T& t) { Unserialize(s, t); }
};





/**
 * string
 */
template<typename Stream, typename C>
void Serialize(Stream& os, const std::basic_string<C>& str)
{
    WriteCompactSize(os, str.size());
    if (!str.empty())
        os.write(MakeByteSpan(str));
}

template<typename Stream, typename C>
void Unserialize(Stream& is, std::basic_string<C>& str)
{
    unsigned int nSize = ReadCompactSize(is);
    str.resize(nSize);
    if (nSize != 0)
        is.read(MakeWritableByteSpan(str));
}



/**
 * prevector
 */
template <typename Stream, unsigned int N, typename T>
void Serialize(Stream& os, const prevector<N, T>& v)
{
    if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
        WriteCompactSize(os, v.size());
        if (!v.empty()) os.write(MakeByteSpan(v));
    } else {
        Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
    }
}


template <typename Stream, unsigned int N, typename T>
void Unserialize(Stream& is, prevector<N, T>& v)
{
    if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
        // Limit size per read so bogus size value won't cause out of memory
        v.clear();
        unsigned int nSize = ReadCompactSize(is);
        unsigned int i = 0;
        while (i < nSize) {
            unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
            v.resize_uninitialized(i + blk);
            is.read(AsWritableBytes(Span{&v[i], blk}));
            i += blk;
        }
    } else {
        Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
    }
}


/**
 * vector
 */
template <typename Stream, typename T, typename A>
void Serialize(Stream& os, const std::vector<T, A>& v)
{
    if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
        WriteCompactSize(os, v.size());
        if (!v.empty()) os.write(MakeByteSpan(v));
    } else if constexpr (std::is_same_v<T, bool>) {
        // A special case for std::vector<bool>, as dereferencing
        // std::vector<bool>::const_iterator does not result in a const bool&
        // due to std::vector's special casing for bool arguments.
        WriteCompactSize(os, v.size());
        for (bool elem : v) {
            ::Serialize(os, elem);
        }
    } else {
        Serialize(os, Using<VectorFormatter<DefaultFormatter>>(v));
    }
}


template <typename Stream, typename T, typename A>
void Unserialize(Stream& is, std::vector<T, A>& v)
{
    if constexpr (BasicByte<T>) { // Use optimized version for unformatted basic bytes
        // Limit size per read so bogus size value won't cause out of memory
        v.clear();
        unsigned int nSize = ReadCompactSize(is);
        unsigned int i = 0;
        while (i < nSize) {
            unsigned int blk = std::min(nSize - i, (unsigned int)(1 + 4999999 / sizeof(T)));
            v.resize(i + blk);
            is.read(AsWritableBytes(Span{&v[i], blk}));
            i += blk;
        }
    } else {
        Unserialize(is, Using<VectorFormatter<DefaultFormatter>>(v));
    }
}


/**
 * pair
 */
template<typename Stream, typename K, typename T>
void Serialize(Stream& os, const std::pair<K, T>& item)
{
    Serialize(os, item.first);
    Serialize(os, item.second);
}

template<typename Stream, typename K, typename T>
void Unserialize(Stream& is, std::pair<K, T>& item)
{
    Unserialize(is, item.first);
    Unserialize(is, item.second);
}



/**
 * map
 */
template<typename Stream, typename K, typename T, typename Pred, typename A>
void Serialize(Stream& os, const std::map<K, T, Pred, A>& m)
{
    WriteCompactSize(os, m.size());
    for (const auto& entry : m)
        Serialize(os, entry);
}

template<typename Stream, typename K, typename T, typename Pred, typename A>
void Unserialize(Stream& is, std::map<K, T, Pred, A>& m)
{
    m.clear();
    unsigned int nSize = ReadCompactSize(is);
    typename std::map<K, T, Pred, A>::iterator mi = m.begin();
    for (unsigned int i = 0; i < nSize; i++)
    {
        std::pair<K, T> item;
        Unserialize(is, item);
        mi = m.insert(mi, item);
    }
}



/**
 * set
 */
template<typename Stream, typename K, typename Pred, typename A>
void Serialize(Stream& os, const std::set<K, Pred, A>& m)
{
    WriteCompactSize(os, m.size());
    for (typename std::set<K, Pred, A>::const_iterator it = m.begin(); it != m.end(); ++it)
        Serialize(os, (*it));
}

template<typename Stream, typename K, typename Pred, typename A>
void Unserialize(Stream& is, std::set<K, Pred, A>& m)
{
    m.clear();
    unsigned int nSize = ReadCompactSize(is);
    typename std::set<K, Pred, A>::iterator it = m.begin();
    for (unsigned int i = 0; i < nSize; i++)
    {
        K key;
        Unserialize(is, key);
        it = m.insert(it, key);
    }
}



/**
 * unique_ptr
 */
template<typename Stream, typename T> void
Serialize(Stream& os, const std::unique_ptr<const T>& p)
{
    Serialize(os, *p);
}

template<typename Stream, typename T>
void Unserialize(Stream& is, std::unique_ptr<const T>& p)
{
    p.reset(new T(deserialize, is));
}



/**
 * shared_ptr
 */
template<typename Stream, typename T> void
Serialize(Stream& os, const std::shared_ptr<const T>& p)
{
    Serialize(os, *p);
}

template<typename Stream, typename T>
void Unserialize(Stream& is, std::shared_ptr<const T>& p)
{
    p = std::make_shared<const T>(deserialize, is);
}

/**
 * Support for (un)serializing many things at once
 */

template <typename Stream, typename... Args>
void SerializeMany(Stream& s, const Args&... args)
{
    (::Serialize(s, args), ...);
}

template <typename Stream, typename... Args>
inline void UnserializeMany(Stream& s, Args&&... args)
{
    (::Unserialize(s, args), ...);
}

/**
 * Support for all macros providing or using the ser_action parameter of the SerializationOps method.
 */
struct ActionSerialize {
    static constexpr bool ForRead() { return false; }

    template<typename Stream, typename... Args>
    static void SerReadWriteMany(Stream& s, const Args&... args)
    {
        ::SerializeMany(s, args...);
    }

    template<typename Stream, typename Type, typename Fn>
    static void SerRead(Stream& s, Type&&, Fn&&)
    {
    }

    template<typename Stream, typename Type, typename Fn>
    static void SerWrite(Stream& s, Type&& obj, Fn&& fn)
    {
        fn(s, std::forward<Type>(obj));
    }
};
struct ActionUnserialize {
    static constexpr bool ForRead() { return true; }

    template<typename Stream, typename... Args>
    static void SerReadWriteMany(Stream& s, Args&&... args)
    {
        ::UnserializeMany(s, args...);
    }

    template<typename Stream, typename Type, typename Fn>
    static void SerRead(Stream& s, Type&& obj, Fn&& fn)
    {
        fn(s, std::forward<Type>(obj));
    }

    template<typename Stream, typename Type, typename Fn>
    static void SerWrite(Stream& s, Type&&, Fn&&)
    {
    }
};

/* ::GetSerializeSize implementations
 *
 * Computing the serialized size of objects is done through a special stream
 * object of type SizeComputer, which only records the number of bytes written
 * to it.
 *
 * If your Serialize or SerializationOp method has non-trivial overhead for
 * serialization, it may be worthwhile to implement a specialized version for
 * SizeComputer, which uses the s.seek() method to record bytes that would
 * be written instead.
 */
class SizeComputer
{
protected:
    size_t nSize{0};

public:
    SizeComputer() {}

    void write(Span<const std::byte> src)
    {
        this->nSize += src.size();
    }

    /** Pretend _nSize bytes are written, without specifying them. */
    void seek(size_t _nSize)
    {
        this->nSize += _nSize;
    }

    template<typename T>
    SizeComputer& operator<<(const T& obj)
    {
        ::Serialize(*this, obj);
        return (*this);
    }

    size_t size() const {
        return nSize;
    }
};

template<typename I>
inline void WriteVarInt(SizeComputer &s, I n)
{
    s.seek(GetSizeOfVarInt<I>(n));
}

inline void WriteCompactSize(SizeComputer &s, uint64_t nSize)
{
    s.seek(GetSizeOfCompactSize(nSize));
}

template <typename T>
size_t GetSerializeSize(const T& t)
{
    return (SizeComputer() << t).size();
}

//! Check if type contains a stream by seeing if has a GetStream() method.
template<typename T>
concept ContainsStream = requires(T t) { t.GetStream(); };

/** Wrapper that overrides the GetParams() function of a stream. */
template <typename SubStream, typename Params>
class ParamsStream
{
    const Params& m_params;
    // If ParamsStream constructor is passed an lvalue argument, Substream will
    // be a reference type, and m_substream will reference that argument.
    // Otherwise m_substream will be a substream instance and move from the
    // argument. Letting ParamsStream contain a substream instance instead of
    // just a reference is useful to make the ParamsStream object self contained
    // and let it do cleanup when destroyed, for example by closing files if
    // SubStream is a file stream.
    SubStream m_substream;

public:
    ParamsStream(SubStream&& substream, const Params& params LIFETIMEBOUND) : m_params{params}, m_substream{std::forward<SubStream>(substream)} {}

    template <typename NestedSubstream, typename Params1, typename Params2, typename... NestedParams>
    ParamsStream(NestedSubstream&& s, const Params1& params1 LIFETIMEBOUND, const Params2& params2 LIFETIMEBOUND, const NestedParams&... params LIFETIMEBOUND)
        : ParamsStream{::ParamsStream{std::forward<NestedSubstream>(s), params2, params...}, params1} {}

    template <typename U> ParamsStream& operator<<(const U& obj) { ::Serialize(*this, obj); return *this; }
    template <typename U> ParamsStream& operator>>(U&& obj) { ::Unserialize(*this, obj); return *this; }
    void write(Span<const std::byte> src) { GetStream().write(src); }
    void read(Span<std::byte> dst) { GetStream().read(dst); }
    void ignore(size_t num) { GetStream().ignore(num); }
    bool eof() const { return GetStream().eof(); }
    size_t size() const { return GetStream().size(); }

    //! Get reference to stream parameters.
    template <typename P>
    const auto& GetParams() const
    {
        if constexpr (std::is_convertible_v<Params, P>) {
            return m_params;
        } else {
            return m_substream.template GetParams<P>();
        }
    }

    //! Get reference to underlying stream.
    auto& GetStream()
    {
        if constexpr (ContainsStream<SubStream>) {
            return m_substream.GetStream();
        } else {
            return m_substream;
        }
    }
    const auto& GetStream() const
    {
        if constexpr (ContainsStream<SubStream>) {
            return m_substream.GetStream();
        } else {
            return m_substream;
        }
    }
};

/**
 * Explicit template deduction guide is required for single-parameter
 * constructor so Substream&& is treated as a forwarding reference, and
 * SubStream is deduced as reference type for lvalue arguments.
 */
template <typename Substream, typename Params>
ParamsStream(Substream&&, const Params&) -> ParamsStream<Substream, Params>;

/**
 * Template deduction guide for multiple params arguments that creates a nested
 * ParamsStream.
 */
template <typename Substream, typename Params1, typename Params2, typename... Params>
ParamsStream(Substream&& s, const Params1& params1, const Params2& params2, const Params&... params) ->
    ParamsStream<decltype(ParamsStream{std::forward<Substream>(s), params2, params...}), Params1>;

/** Wrapper that serializes objects with the specified parameters. */
template <typename Params, typename T>
class ParamsWrapper
{
    const Params& m_params;
    T& m_object;

public:
    explicit ParamsWrapper(const Params& params, T& obj) : m_params{params}, m_object{obj} {}

    template <typename Stream>
    void Serialize(Stream& s) const
    {
        ParamsStream ss{s, m_params};
        ::Serialize(ss, m_object);
    }
    template <typename Stream>
    void Unserialize(Stream& s)
    {
        ParamsStream ss{s, m_params};
        ::Unserialize(ss, m_object);
    }
};

/**
 * Helper macro for SerParams structs
 *
 * Allows you define SerParams instances and then apply them directly
 * to an object via function call syntax, eg:
 *
 *   constexpr SerParams FOO{....};
 *   ss << FOO(obj);
 */
#define SER_PARAMS_OPFUNC                                                                \
    /**                                                                                  \
     * Return a wrapper around t that (de)serializes it with specified parameter params. \
     *                                                                                   \
     * See SER_PARAMS for more information on serialization parameters.                  \
     */                                                                                  \
    template <typename T>                                                                \
    auto operator()(T&& t) const                                                         \
    {                                                                                    \
        return ParamsWrapper{*this, t};                                                  \
    }

#endif // BITCOIN_SERIALIZE_H