aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/tests.c
blob: f7f1acac6463f99d11509be6a905f5d2bc984b42 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include <stdio.h>
#include <stdlib.h>

#include <time.h>

#include "secp256k1.c"
#include "testrand_impl.h"

#ifdef ENABLE_OPENSSL_TESTS
#include "openssl/bn.h"
#include "openssl/ec.h"
#include "openssl/ecdsa.h"
#include "openssl/obj_mac.h"
#endif

static int count = 64;

void random_field_element_test(secp256k1_fe_t *fe) {
    do {
        unsigned char b32[32];
        secp256k1_rand256_test(b32);
        if (secp256k1_fe_set_b32(fe, b32)) {
            break;
        }
    } while(1);
}

void random_field_element_magnitude(secp256k1_fe_t *fe) {
    secp256k1_fe_t zero;
    int n = secp256k1_rand32() % 9;
    secp256k1_fe_normalize(fe);
    if (n == 0) {
        return;
    }
    secp256k1_fe_clear(&zero);
    secp256k1_fe_negate(&zero, &zero, 0);
    secp256k1_fe_mul_int(&zero, n - 1);
    secp256k1_fe_add(fe, &zero);
#ifdef VERIFY
    CHECK(fe->magnitude == n);
#endif
}

void random_group_element_test(secp256k1_ge_t *ge) {
    secp256k1_fe_t fe;
    do {
        random_field_element_test(&fe);
        if (secp256k1_ge_set_xo_var(ge, &fe, secp256k1_rand32() & 1))
            break;
    } while(1);
}

void random_group_element_jacobian_test(secp256k1_gej_t *gej, const secp256k1_ge_t *ge) {
    secp256k1_fe_t z2, z3;
    do {
        random_field_element_test(&gej->z);
        if (!secp256k1_fe_is_zero(&gej->z)) {
            break;
        }
    } while(1);
    secp256k1_fe_sqr(&z2, &gej->z);
    secp256k1_fe_mul(&z3, &z2, &gej->z);
    secp256k1_fe_mul(&gej->x, &ge->x, &z2);
    secp256k1_fe_mul(&gej->y, &ge->y, &z3);
    gej->infinity = ge->infinity;
}

void random_scalar_order_test(secp256k1_scalar_t *num) {
    do {
        unsigned char b32[32];
        int overflow = 0;
        secp256k1_rand256_test(b32);
        secp256k1_scalar_set_b32(num, b32, &overflow);
        if (overflow || secp256k1_scalar_is_zero(num))
            continue;
        break;
    } while(1);
}

void random_scalar_order(secp256k1_scalar_t *num) {
    do {
        unsigned char b32[32];
        int overflow = 0;
        secp256k1_rand256(b32);
        secp256k1_scalar_set_b32(num, b32, &overflow);
        if (overflow || secp256k1_scalar_is_zero(num))
            continue;
        break;
    } while(1);
}

/***** HASH TESTS *****/

void run_sha256_tests(void) {
    static const char *inputs[8] = {
        "", "abc", "message digest", "secure hash algorithm", "SHA256 is considered to be safe",
        "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq",
        "For this sample, this 63-byte string will be used as input data",
        "This is exactly 64 bytes long, not counting the terminating byte"
    };
    static const unsigned char outputs[8][32] = {
        {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55},
        {0xba, 0x78, 0x16, 0xbf, 0x8f, 0x01, 0xcf, 0xea, 0x41, 0x41, 0x40, 0xde, 0x5d, 0xae, 0x22, 0x23, 0xb0, 0x03, 0x61, 0xa3, 0x96, 0x17, 0x7a, 0x9c, 0xb4, 0x10, 0xff, 0x61, 0xf2, 0x00, 0x15, 0xad},
        {0xf7, 0x84, 0x6f, 0x55, 0xcf, 0x23, 0xe1, 0x4e, 0xeb, 0xea, 0xb5, 0xb4, 0xe1, 0x55, 0x0c, 0xad, 0x5b, 0x50, 0x9e, 0x33, 0x48, 0xfb, 0xc4, 0xef, 0xa3, 0xa1, 0x41, 0x3d, 0x39, 0x3c, 0xb6, 0x50},
        {0xf3, 0x0c, 0xeb, 0x2b, 0xb2, 0x82, 0x9e, 0x79, 0xe4, 0xca, 0x97, 0x53, 0xd3, 0x5a, 0x8e, 0xcc, 0x00, 0x26, 0x2d, 0x16, 0x4c, 0xc0, 0x77, 0x08, 0x02, 0x95, 0x38, 0x1c, 0xbd, 0x64, 0x3f, 0x0d},
        {0x68, 0x19, 0xd9, 0x15, 0xc7, 0x3f, 0x4d, 0x1e, 0x77, 0xe4, 0xe1, 0xb5, 0x2d, 0x1f, 0xa0, 0xf9, 0xcf, 0x9b, 0xea, 0xea, 0xd3, 0x93, 0x9f, 0x15, 0x87, 0x4b, 0xd9, 0x88, 0xe2, 0xa2, 0x36, 0x30},
        {0x24, 0x8d, 0x6a, 0x61, 0xd2, 0x06, 0x38, 0xb8, 0xe5, 0xc0, 0x26, 0x93, 0x0c, 0x3e, 0x60, 0x39, 0xa3, 0x3c, 0xe4, 0x59, 0x64, 0xff, 0x21, 0x67, 0xf6, 0xec, 0xed, 0xd4, 0x19, 0xdb, 0x06, 0xc1},
        {0xf0, 0x8a, 0x78, 0xcb, 0xba, 0xee, 0x08, 0x2b, 0x05, 0x2a, 0xe0, 0x70, 0x8f, 0x32, 0xfa, 0x1e, 0x50, 0xc5, 0xc4, 0x21, 0xaa, 0x77, 0x2b, 0xa5, 0xdb, 0xb4, 0x06, 0xa2, 0xea, 0x6b, 0xe3, 0x42},
        {0xab, 0x64, 0xef, 0xf7, 0xe8, 0x8e, 0x2e, 0x46, 0x16, 0x5e, 0x29, 0xf2, 0xbc, 0xe4, 0x18, 0x26, 0xbd, 0x4c, 0x7b, 0x35, 0x52, 0xf6, 0xb3, 0x82, 0xa9, 0xe7, 0xd3, 0xaf, 0x47, 0xc2, 0x45, 0xf8}
    };
    int i;
    for (i = 0; i < 8; i++) {
        unsigned char out[32];
        secp256k1_sha256_t hasher;
        secp256k1_sha256_initialize(&hasher);
        secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
        secp256k1_sha256_finalize(&hasher, out);
        CHECK(memcmp(out, outputs[i], 32) == 0);
        if (strlen(inputs[i]) > 0) {
            int split = secp256k1_rand32() % strlen(inputs[i]);
            secp256k1_sha256_initialize(&hasher);
            secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
            secp256k1_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
            secp256k1_sha256_finalize(&hasher, out);
            CHECK(memcmp(out, outputs[i], 32) == 0);
        }
    }
}

void run_hmac_sha256_tests(void) {
    static const char *keys[6] = {
        "\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b\x0b",
        "\x4a\x65\x66\x65",
        "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
        "\x01\x02\x03\x04\x05\x06\x07\x08\x09\x0a\x0b\x0c\x0d\x0e\x0f\x10\x11\x12\x13\x14\x15\x16\x17\x18\x19",
        "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa",
        "\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa\xaa"
    };
    static const char *inputs[6] = {
        "\x48\x69\x20\x54\x68\x65\x72\x65",
        "\x77\x68\x61\x74\x20\x64\x6f\x20\x79\x61\x20\x77\x61\x6e\x74\x20\x66\x6f\x72\x20\x6e\x6f\x74\x68\x69\x6e\x67\x3f",
        "\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd\xdd",
        "\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd\xcd",
        "\x54\x65\x73\x74\x20\x55\x73\x69\x6e\x67\x20\x4c\x61\x72\x67\x65\x72\x20\x54\x68\x61\x6e\x20\x42\x6c\x6f\x63\x6b\x2d\x53\x69\x7a\x65\x20\x4b\x65\x79\x20\x2d\x20\x48\x61\x73\x68\x20\x4b\x65\x79\x20\x46\x69\x72\x73\x74",
        "\x54\x68\x69\x73\x20\x69\x73\x20\x61\x20\x74\x65\x73\x74\x20\x75\x73\x69\x6e\x67\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x6b\x65\x79\x20\x61\x6e\x64\x20\x61\x20\x6c\x61\x72\x67\x65\x72\x20\x74\x68\x61\x6e\x20\x62\x6c\x6f\x63\x6b\x2d\x73\x69\x7a\x65\x20\x64\x61\x74\x61\x2e\x20\x54\x68\x65\x20\x6b\x65\x79\x20\x6e\x65\x65\x64\x73\x20\x74\x6f\x20\x62\x65\x20\x68\x61\x73\x68\x65\x64\x20\x62\x65\x66\x6f\x72\x65\x20\x62\x65\x69\x6e\x67\x20\x75\x73\x65\x64\x20\x62\x79\x20\x74\x68\x65\x20\x48\x4d\x41\x43\x20\x61\x6c\x67\x6f\x72\x69\x74\x68\x6d\x2e"
    };
    static const unsigned char outputs[6][32] = {
        {0xb0, 0x34, 0x4c, 0x61, 0xd8, 0xdb, 0x38, 0x53, 0x5c, 0xa8, 0xaf, 0xce, 0xaf, 0x0b, 0xf1, 0x2b, 0x88, 0x1d, 0xc2, 0x00, 0xc9, 0x83, 0x3d, 0xa7, 0x26, 0xe9, 0x37, 0x6c, 0x2e, 0x32, 0xcf, 0xf7},
        {0x5b, 0xdc, 0xc1, 0x46, 0xbf, 0x60, 0x75, 0x4e, 0x6a, 0x04, 0x24, 0x26, 0x08, 0x95, 0x75, 0xc7, 0x5a, 0x00, 0x3f, 0x08, 0x9d, 0x27, 0x39, 0x83, 0x9d, 0xec, 0x58, 0xb9, 0x64, 0xec, 0x38, 0x43},
        {0x77, 0x3e, 0xa9, 0x1e, 0x36, 0x80, 0x0e, 0x46, 0x85, 0x4d, 0xb8, 0xeb, 0xd0, 0x91, 0x81, 0xa7, 0x29, 0x59, 0x09, 0x8b, 0x3e, 0xf8, 0xc1, 0x22, 0xd9, 0x63, 0x55, 0x14, 0xce, 0xd5, 0x65, 0xfe},
        {0x82, 0x55, 0x8a, 0x38, 0x9a, 0x44, 0x3c, 0x0e, 0xa4, 0xcc, 0x81, 0x98, 0x99, 0xf2, 0x08, 0x3a, 0x85, 0xf0, 0xfa, 0xa3, 0xe5, 0x78, 0xf8, 0x07, 0x7a, 0x2e, 0x3f, 0xf4, 0x67, 0x29, 0x66, 0x5b},
        {0x60, 0xe4, 0x31, 0x59, 0x1e, 0xe0, 0xb6, 0x7f, 0x0d, 0x8a, 0x26, 0xaa, 0xcb, 0xf5, 0xb7, 0x7f, 0x8e, 0x0b, 0xc6, 0x21, 0x37, 0x28, 0xc5, 0x14, 0x05, 0x46, 0x04, 0x0f, 0x0e, 0xe3, 0x7f, 0x54},
        {0x9b, 0x09, 0xff, 0xa7, 0x1b, 0x94, 0x2f, 0xcb, 0x27, 0x63, 0x5f, 0xbc, 0xd5, 0xb0, 0xe9, 0x44, 0xbf, 0xdc, 0x63, 0x64, 0x4f, 0x07, 0x13, 0x93, 0x8a, 0x7f, 0x51, 0x53, 0x5c, 0x3a, 0x35, 0xe2}
    };
    int i;
    for (i = 0; i < 6; i++) {
        secp256k1_hmac_sha256_t hasher;
        unsigned char out[32];
        secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
        secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), strlen(inputs[i]));
        secp256k1_hmac_sha256_finalize(&hasher, out);
        CHECK(memcmp(out, outputs[i], 32) == 0);
        if (strlen(inputs[i]) > 0) {
            int split = secp256k1_rand32() % strlen(inputs[i]);
            secp256k1_hmac_sha256_initialize(&hasher, (const unsigned char*)(keys[i]), strlen(keys[i]));
            secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i]), split);
            secp256k1_hmac_sha256_write(&hasher, (const unsigned char*)(inputs[i] + split), strlen(inputs[i]) - split);
            secp256k1_hmac_sha256_finalize(&hasher, out);
            CHECK(memcmp(out, outputs[i], 32) == 0);
        }
    }
}

void run_rfc6979_hmac_sha256_tests(void) {
    static const unsigned char key1[32] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f, 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f, 0x00};
    static const unsigned char msg1[32] = {0x4b, 0xf5, 0x12, 0x2f, 0x34, 0x45, 0x54, 0xc5, 0x3b, 0xde, 0x2e, 0xbb, 0x8c, 0xd2, 0xb7, 0xe3, 0xd1, 0x60, 0x0a, 0xd6, 0x31, 0xc3, 0x85, 0xa5, 0xd7, 0xcc, 0xe2, 0x3c, 0x77, 0x85, 0x45, 0x9a};
    static const unsigned char out1[3][32] = {
        {0x4f, 0xe2, 0x95, 0x25, 0xb2, 0x08, 0x68, 0x09, 0x15, 0x9a, 0xcd, 0xf0, 0x50, 0x6e, 0xfb, 0x86, 0xb0, 0xec, 0x93, 0x2c, 0x7b, 0xa4, 0x42, 0x56, 0xab, 0x32, 0x1e, 0x42, 0x1e, 0x67, 0xe9, 0xfb},
        {0x2b, 0xf0, 0xff, 0xf1, 0xd3, 0xc3, 0x78, 0xa2, 0x2d, 0xc5, 0xde, 0x1d, 0x85, 0x65, 0x22, 0x32, 0x5c, 0x65, 0xb5, 0x04, 0x49, 0x1a, 0x0c, 0xbd, 0x01, 0xcb, 0x8f, 0x3a, 0xa6, 0x7f, 0xfd, 0x4a},
        {0xf5, 0x28, 0xb4, 0x10, 0xcb, 0x54, 0x1f, 0x77, 0x00, 0x0d, 0x7a, 0xfb, 0x6c, 0x5b, 0x53, 0xc5, 0xc4, 0x71, 0xea, 0xb4, 0x3e, 0x46, 0x6d, 0x9a, 0xc5, 0x19, 0x0c, 0x39, 0xc8, 0x2f, 0xd8, 0x2e}
    };

    static const unsigned char key2[32] = {0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff};
    static const unsigned char msg2[32] = {0xe3, 0xb0, 0xc4, 0x42, 0x98, 0xfc, 0x1c, 0x14, 0x9a, 0xfb, 0xf4, 0xc8, 0x99, 0x6f, 0xb9, 0x24, 0x27, 0xae, 0x41, 0xe4, 0x64, 0x9b, 0x93, 0x4c, 0xa4, 0x95, 0x99, 0x1b, 0x78, 0x52, 0xb8, 0x55};
    static const unsigned char out2[3][32] = {
        {0x9c, 0x23, 0x6c, 0x16, 0x5b, 0x82, 0xae, 0x0c, 0xd5, 0x90, 0x65, 0x9e, 0x10, 0x0b, 0x6b, 0xab, 0x30, 0x36, 0xe7, 0xba, 0x8b, 0x06, 0x74, 0x9b, 0xaf, 0x69, 0x81, 0xe1, 0x6f, 0x1a, 0x2b, 0x95},
        {0xdf, 0x47, 0x10, 0x61, 0x62, 0x5b, 0xc0, 0xea, 0x14, 0xb6, 0x82, 0xfe, 0xee, 0x2c, 0x9c, 0x02, 0xf2, 0x35, 0xda, 0x04, 0x20, 0x4c, 0x1d, 0x62, 0xa1, 0x53, 0x6c, 0x6e, 0x17, 0xae, 0xd7, 0xa9},
        {0x75, 0x97, 0x88, 0x7c, 0xbd, 0x76, 0x32, 0x1f, 0x32, 0xe3, 0x04, 0x40, 0x67, 0x9a, 0x22, 0xcf, 0x7f, 0x8d, 0x9d, 0x2e, 0xac, 0x39, 0x0e, 0x58, 0x1f, 0xea, 0x09, 0x1c, 0xe2, 0x02, 0xba, 0x94}
    };

    secp256k1_rfc6979_hmac_sha256_t rng;
    unsigned char out[32];
    unsigned char zero[1] = {0};
    int i;

    secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, NULL, 1);
    for (i = 0; i < 3; i++) {
        secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
        CHECK(memcmp(out, out1[i], 32) == 0);
    }
    secp256k1_rfc6979_hmac_sha256_finalize(&rng);

    secp256k1_rfc6979_hmac_sha256_initialize(&rng, key1, 32, msg1, 32, zero, 1);
    for (i = 0; i < 3; i++) {
        secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
        CHECK(memcmp(out, out1[i], 32) != 0);
    }
    secp256k1_rfc6979_hmac_sha256_finalize(&rng);

    secp256k1_rfc6979_hmac_sha256_initialize(&rng, key2, 32, msg2, 32, zero, 0);
    for (i = 0; i < 3; i++) {
        secp256k1_rfc6979_hmac_sha256_generate(&rng, out, 32);
        CHECK(memcmp(out, out2[i], 32) == 0);
    }
    secp256k1_rfc6979_hmac_sha256_finalize(&rng);
}

/***** NUM TESTS *****/

#ifndef USE_NUM_NONE
void random_num_negate(secp256k1_num_t *num) {
    if (secp256k1_rand32() & 1)
        secp256k1_num_negate(num);
}

void random_num_order_test(secp256k1_num_t *num) {
    secp256k1_scalar_t sc;
    random_scalar_order_test(&sc);
    secp256k1_scalar_get_num(num, &sc);
}

void random_num_order(secp256k1_num_t *num) {
    secp256k1_scalar_t sc;
    random_scalar_order(&sc);
    secp256k1_scalar_get_num(num, &sc);
}

void test_num_negate(void) {
    secp256k1_num_t n1;
    secp256k1_num_t n2;
    random_num_order_test(&n1); /* n1 = R */
    random_num_negate(&n1);
    secp256k1_num_copy(&n2, &n1); /* n2 = R */
    secp256k1_num_sub(&n1, &n2, &n1); /* n1 = n2-n1 = 0 */
    CHECK(secp256k1_num_is_zero(&n1));
    secp256k1_num_copy(&n1, &n2); /* n1 = R */
    secp256k1_num_negate(&n1); /* n1 = -R */
    CHECK(!secp256k1_num_is_zero(&n1));
    secp256k1_num_add(&n1, &n2, &n1); /* n1 = n2+n1 = 0 */
    CHECK(secp256k1_num_is_zero(&n1));
    secp256k1_num_copy(&n1, &n2); /* n1 = R */
    secp256k1_num_negate(&n1); /* n1 = -R */
    CHECK(secp256k1_num_is_neg(&n1) != secp256k1_num_is_neg(&n2));
    secp256k1_num_negate(&n1); /* n1 = R */
    CHECK(secp256k1_num_eq(&n1, &n2));
}

void test_num_add_sub(void) {
    secp256k1_num_t n1;
    secp256k1_num_t n2;
    secp256k1_num_t n1p2, n2p1, n1m2, n2m1;
    int r = secp256k1_rand32();
    random_num_order_test(&n1); /* n1 = R1 */
    if (r & 1) {
        random_num_negate(&n1);
    }
    random_num_order_test(&n2); /* n2 = R2 */
    if (r & 2) {
        random_num_negate(&n2);
    }
    secp256k1_num_add(&n1p2, &n1, &n2); /* n1p2 = R1 + R2 */
    secp256k1_num_add(&n2p1, &n2, &n1); /* n2p1 = R2 + R1 */
    secp256k1_num_sub(&n1m2, &n1, &n2); /* n1m2 = R1 - R2 */
    secp256k1_num_sub(&n2m1, &n2, &n1); /* n2m1 = R2 - R1 */
    CHECK(secp256k1_num_eq(&n1p2, &n2p1));
    CHECK(!secp256k1_num_eq(&n1p2, &n1m2));
    secp256k1_num_negate(&n2m1); /* n2m1 = -R2 + R1 */
    CHECK(secp256k1_num_eq(&n2m1, &n1m2));
    CHECK(!secp256k1_num_eq(&n2m1, &n1));
    secp256k1_num_add(&n2m1, &n2m1, &n2); /* n2m1 = -R2 + R1 + R2 = R1 */
    CHECK(secp256k1_num_eq(&n2m1, &n1));
    CHECK(!secp256k1_num_eq(&n2p1, &n1));
    secp256k1_num_sub(&n2p1, &n2p1, &n2); /* n2p1 = R2 + R1 - R2 = R1 */
    CHECK(secp256k1_num_eq(&n2p1, &n1));
}

void run_num_smalltests(void) {
    int i;
    for (i = 0; i < 100*count; i++) {
        test_num_negate();
        test_num_add_sub();
    }
}
#endif

/***** SCALAR TESTS *****/

void scalar_test(void) {
    secp256k1_scalar_t s;
    secp256k1_scalar_t s1;
    secp256k1_scalar_t s2;
#ifndef USE_NUM_NONE
    secp256k1_num_t snum, s1num, s2num;
    secp256k1_num_t order, half_order;
#endif
    unsigned char c[32];

    /* Set 's' to a random scalar, with value 'snum'. */
    random_scalar_order_test(&s);

    /* Set 's1' to a random scalar, with value 's1num'. */
    random_scalar_order_test(&s1);

    /* Set 's2' to a random scalar, with value 'snum2', and byte array representation 'c'. */
    random_scalar_order_test(&s2);
    secp256k1_scalar_get_b32(c, &s2);

#ifndef USE_NUM_NONE
    secp256k1_scalar_get_num(&snum, &s);
    secp256k1_scalar_get_num(&s1num, &s1);
    secp256k1_scalar_get_num(&s2num, &s2);

    secp256k1_scalar_order_get_num(&order);
    half_order = order;
    secp256k1_num_shift(&half_order, 1);
#endif

    {
        int i;
        /* Test that fetching groups of 4 bits from a scalar and recursing n(i)=16*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        secp256k1_scalar_set_int(&n, 0);
        for (i = 0; i < 256; i += 4) {
            secp256k1_scalar_t t;
            int j;
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits(&s, 256 - 4 - i, 4));
            for (j = 0; j < 4; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

    {
        /* Test that fetching groups of randomly-sized bits from a scalar and recursing n(i)=b*n(i-1)+p(i) reconstructs it. */
        secp256k1_scalar_t n;
        int i = 0;
        secp256k1_scalar_set_int(&n, 0);
        while (i < 256) {
            secp256k1_scalar_t t;
            int j;
            int now = (secp256k1_rand32() % 15) + 1;
            if (now + i > 256) {
                now = 256 - i;
            }
            secp256k1_scalar_set_int(&t, secp256k1_scalar_get_bits_var(&s, 256 - now - i, now));
            for (j = 0; j < now; j++) {
                secp256k1_scalar_add(&n, &n, &n);
            }
            secp256k1_scalar_add(&n, &n, &t);
            i += now;
        }
        CHECK(secp256k1_scalar_eq(&n, &s));
    }

#ifndef USE_NUM_NONE
    {
        /* Test that adding the scalars together is equal to adding their numbers together modulo the order. */
        secp256k1_num_t rnum;
        secp256k1_num_t r2num;
        secp256k1_scalar_t r;
        secp256k1_num_add(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_add(&r, &s, &s2);
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
    }

    {
        /* Test that multipying the scalars is equal to multiplying their numbers modulo the order. */
        secp256k1_scalar_t r;
        secp256k1_num_t r2num;
        secp256k1_num_t rnum;
        secp256k1_num_mul(&rnum, &snum, &s2num);
        secp256k1_num_mod(&rnum, &order);
        secp256k1_scalar_mul(&r, &s, &s2);
        secp256k1_scalar_get_num(&r2num, &r);
        CHECK(secp256k1_num_eq(&rnum, &r2num));
        /* The result can only be zero if at least one of the factors was zero. */
        CHECK(secp256k1_scalar_is_zero(&r) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_zero(&s2)));
        /* The results can only be equal to one of the factors if that factor was zero, or the other factor was one. */
        CHECK(secp256k1_num_eq(&rnum, &snum) == (secp256k1_scalar_is_zero(&s) || secp256k1_scalar_is_one(&s2)));
        CHECK(secp256k1_num_eq(&rnum, &s2num) == (secp256k1_scalar_is_zero(&s2) || secp256k1_scalar_is_one(&s)));
    }

    {
        secp256k1_scalar_t neg;
        secp256k1_num_t negnum;
        secp256k1_num_t negnum2;
        /* Check that comparison with zero matches comparison with zero on the number. */
        CHECK(secp256k1_num_is_zero(&snum) == secp256k1_scalar_is_zero(&s));
        /* Check that comparison with the half order is equal to testing for high scalar. */
        CHECK(secp256k1_scalar_is_high(&s) == (secp256k1_num_cmp(&snum, &half_order) > 0));
        secp256k1_scalar_negate(&neg, &s);
        secp256k1_num_sub(&negnum, &order, &snum);
        secp256k1_num_mod(&negnum, &order);
        /* Check that comparison with the half order is equal to testing for high scalar after negation. */
        CHECK(secp256k1_scalar_is_high(&neg) == (secp256k1_num_cmp(&negnum, &half_order) > 0));
        /* Negating should change the high property, unless the value was already zero. */
        CHECK((secp256k1_scalar_is_high(&s) == secp256k1_scalar_is_high(&neg)) == secp256k1_scalar_is_zero(&s));
        secp256k1_scalar_get_num(&negnum2, &neg);
        /* Negating a scalar should be equal to (order - n) mod order on the number. */
        CHECK(secp256k1_num_eq(&negnum, &negnum2));
        secp256k1_scalar_add(&neg, &neg, &s);
        /* Adding a number to its negation should result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
        secp256k1_scalar_negate(&neg, &neg);
        /* Negating zero should still result in zero. */
        CHECK(secp256k1_scalar_is_zero(&neg));
    }

    {
        /* Test secp256k1_scalar_mul_shift_var. */
        secp256k1_scalar_t r;
        secp256k1_num_t one;
        secp256k1_num_t rnum;
        secp256k1_num_t rnum2;
        unsigned char cone[1] = {0x01};
        unsigned int shift = 256 + (secp256k1_rand32() % 257);
        secp256k1_scalar_mul_shift_var(&r, &s1, &s2, shift);
        secp256k1_num_mul(&rnum, &s1num, &s2num);
        secp256k1_num_shift(&rnum, shift - 1);
        secp256k1_num_set_bin(&one, cone, 1);
        secp256k1_num_add(&rnum, &rnum, &one);
        secp256k1_num_shift(&rnum, 1);
        secp256k1_scalar_get_num(&rnum2, &r);
        CHECK(secp256k1_num_eq(&rnum, &rnum2));
    }
#endif

    {
        /* Test that scalar inverses are equal to the inverse of their number modulo the order. */
        if (!secp256k1_scalar_is_zero(&s)) {
            secp256k1_scalar_t inv;
#ifndef USE_NUM_NONE
            secp256k1_num_t invnum;
            secp256k1_num_t invnum2;
#endif
            secp256k1_scalar_inverse(&inv, &s);
#ifndef USE_NUM_NONE
            secp256k1_num_mod_inverse(&invnum, &snum, &order);
            secp256k1_scalar_get_num(&invnum2, &inv);
            CHECK(secp256k1_num_eq(&invnum, &invnum2));
#endif
            secp256k1_scalar_mul(&inv, &inv, &s);
            /* Multiplying a scalar with its inverse must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
            secp256k1_scalar_inverse(&inv, &inv);
            /* Inverting one must result in one. */
            CHECK(secp256k1_scalar_is_one(&inv));
        }
    }

    {
        /* Test commutativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_t b;
        int i;
        /* Test add_bit. */
        int bit = secp256k1_rand32() % 256;
        secp256k1_scalar_set_int(&b, 1);
        CHECK(secp256k1_scalar_is_one(&b));
        for (i = 0; i < bit; i++) {
            secp256k1_scalar_add(&b, &b, &b);
        }
        r1 = s1;
        r2 = s1;
        if (!secp256k1_scalar_add(&r1, &r1, &b)) {
            /* No overflow happened. */
            secp256k1_scalar_add_bit(&r2, bit);
            CHECK(secp256k1_scalar_eq(&r1, &r2));
        }
    }

    {
        /* Test commutativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r2, &s2, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of add. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_add(&r1, &r1, &s);
        secp256k1_scalar_add(&r2, &s2, &s);
        secp256k1_scalar_add(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test associativity of mul. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_mul(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s2, &s);
        secp256k1_scalar_mul(&r2, &s1, &r2);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test distributitivity of mul over add. */
        secp256k1_scalar_t r1, r2, t;
        secp256k1_scalar_add(&r1, &s1, &s2);
        secp256k1_scalar_mul(&r1, &r1, &s);
        secp256k1_scalar_mul(&r2, &s1, &s);
        secp256k1_scalar_mul(&t, &s2, &s);
        secp256k1_scalar_add(&r2, &r2, &t);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test square. */
        secp256k1_scalar_t r1, r2;
        secp256k1_scalar_sqr(&r1, &s1);
        secp256k1_scalar_mul(&r2, &s1, &s1);
        CHECK(secp256k1_scalar_eq(&r1, &r2));
    }

    {
        /* Test multiplicative identity. */
        secp256k1_scalar_t r1, v1;
        secp256k1_scalar_set_int(&v1,1);
        secp256k1_scalar_mul(&r1, &s1, &v1);
        CHECK(secp256k1_scalar_eq(&r1, &s1));
    }

    {
        /* Test additive identity. */
        secp256k1_scalar_t r1, v0;
        secp256k1_scalar_set_int(&v0,0);
        secp256k1_scalar_add(&r1, &s1, &v0);
        CHECK(secp256k1_scalar_eq(&r1, &s1));
    }

    {
        /* Test zero product property. */
        secp256k1_scalar_t r1, v0;
        secp256k1_scalar_set_int(&v0,0);
        secp256k1_scalar_mul(&r1, &s1, &v0);
        CHECK(secp256k1_scalar_eq(&r1, &v0));
    }

}

void run_scalar_tests(void) {
    int i;
    for (i = 0; i < 128 * count; i++) {
        scalar_test();
    }

    {
        /* (-1)+1 should be zero. */
        secp256k1_scalar_t s, o;
        secp256k1_scalar_set_int(&s, 1);
        CHECK(secp256k1_scalar_is_one(&s));
        secp256k1_scalar_negate(&o, &s);
        secp256k1_scalar_add(&o, &o, &s);
        CHECK(secp256k1_scalar_is_zero(&o));
        secp256k1_scalar_negate(&o, &o);
        CHECK(secp256k1_scalar_is_zero(&o));
    }

#ifndef USE_NUM_NONE
    {
        /* A scalar with value of the curve order should be 0. */
        secp256k1_num_t order;
        secp256k1_scalar_t zero;
        unsigned char bin[32];
        int overflow = 0;
        secp256k1_scalar_order_get_num(&order);
        secp256k1_num_get_bin(bin, 32, &order);
        secp256k1_scalar_set_b32(&zero, bin, &overflow);
        CHECK(overflow == 1);
        CHECK(secp256k1_scalar_is_zero(&zero));
    }
#endif
}

/***** FIELD TESTS *****/

void random_fe(secp256k1_fe_t *x) {
    unsigned char bin[32];
    do {
        secp256k1_rand256(bin);
        if (secp256k1_fe_set_b32(x, bin)) {
            return;
        }
    } while(1);
}

void random_fe_non_zero(secp256k1_fe_t *nz) {
    int tries = 10;
    while (--tries >= 0) {
        random_fe(nz);
        secp256k1_fe_normalize(nz);
        if (!secp256k1_fe_is_zero(nz))
            break;
    }
    /* Infinitesimal probability of spurious failure here */
    CHECK(tries >= 0);
}

void random_fe_non_square(secp256k1_fe_t *ns) {
    secp256k1_fe_t r;
    random_fe_non_zero(ns);
    if (secp256k1_fe_sqrt_var(&r, ns)) {
        secp256k1_fe_negate(ns, ns, 1);
    }
}

int check_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
    secp256k1_fe_t an = *a;
    secp256k1_fe_t bn = *b;
    secp256k1_fe_normalize_weak(&an);
    secp256k1_fe_normalize_var(&bn);
    return secp256k1_fe_equal_var(&an, &bn);
}

int check_fe_inverse(const secp256k1_fe_t *a, const secp256k1_fe_t *ai) {
    secp256k1_fe_t x;
    secp256k1_fe_t one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);
    secp256k1_fe_mul(&x, a, ai);
    return check_fe_equal(&x, &one);
}

void run_field_convert(void) {
    static const unsigned char b32[32] = {
        0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
        0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17, 0x18,
        0x22, 0x23, 0x24, 0x25, 0x26, 0x27, 0x28, 0x29,
        0x33, 0x34, 0x35, 0x36, 0x37, 0x38, 0x39, 0x40
    };
    static const secp256k1_fe_storage_t fes = SECP256K1_FE_STORAGE_CONST(
        0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
        0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
    );
    static const secp256k1_fe_t fe = SECP256K1_FE_CONST(
        0x00010203UL, 0x04050607UL, 0x11121314UL, 0x15161718UL,
        0x22232425UL, 0x26272829UL, 0x33343536UL, 0x37383940UL
    );
    secp256k1_fe_t fe2;
    unsigned char b322[32];
    secp256k1_fe_storage_t fes2;
    /* Check conversions to fe. */
    CHECK(secp256k1_fe_set_b32(&fe2, b32));
    CHECK(secp256k1_fe_equal_var(&fe, &fe2));
    secp256k1_fe_from_storage(&fe2, &fes);
    CHECK(secp256k1_fe_equal_var(&fe, &fe2));
    /* Check conversion from fe. */
    secp256k1_fe_get_b32(b322, &fe);
    CHECK(memcmp(b322, b32, 32) == 0);
    secp256k1_fe_to_storage(&fes2, &fe);
    CHECK(memcmp(&fes2, &fes, sizeof(fes)) == 0);
}

void run_field_misc(void) {
    secp256k1_fe_t x;
    secp256k1_fe_t y;
    secp256k1_fe_t z;
    secp256k1_fe_t q;
    secp256k1_fe_t fe5 = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 5);
    int i;
    for (i = 0; i < 5*count; i++) {
        secp256k1_fe_storage_t xs, ys, zs;
        random_fe(&x);
        random_fe_non_zero(&y);
        /* Test the fe equality and comparison operations. */
        CHECK(secp256k1_fe_cmp_var(&x, &x) == 0);
        CHECK(secp256k1_fe_equal_var(&x, &x));
        z = x;
        secp256k1_fe_add(&z,&y);
        secp256k1_fe_normalize(&z);
        /* Test storage conversion and conditional moves. */
        secp256k1_fe_to_storage(&xs, &x);
        secp256k1_fe_to_storage(&ys, &y);
        secp256k1_fe_to_storage(&zs, &z);
        secp256k1_fe_storage_cmov(&zs, &xs, 0);
        CHECK(memcmp(&xs, &zs, sizeof(xs)) != 0);
        secp256k1_fe_storage_cmov(&ys, &xs, 1);
        CHECK(memcmp(&xs, &ys, sizeof(xs)) == 0);
        secp256k1_fe_from_storage(&x, &xs);
        secp256k1_fe_from_storage(&y, &ys);
        secp256k1_fe_from_storage(&z, &zs);
        /* Test that mul_int, mul, and add agree. */
        secp256k1_fe_add(&y, &x);
        secp256k1_fe_add(&y, &x);
        z = x;
        secp256k1_fe_mul_int(&z, 3);
        CHECK(check_fe_equal(&y, &z));
        secp256k1_fe_add(&y, &x);
        secp256k1_fe_add(&z, &x);
        CHECK(check_fe_equal(&z, &y));
        z = x;
        secp256k1_fe_mul_int(&z, 5);
        secp256k1_fe_mul(&q, &x, &fe5);
        CHECK(check_fe_equal(&z, &q));
        secp256k1_fe_negate(&x, &x, 1);
        secp256k1_fe_add(&z, &x);
        secp256k1_fe_add(&q, &x);
        CHECK(check_fe_equal(&y, &z));
        CHECK(check_fe_equal(&q, &y));
    }
}

void run_field_inv(void) {
    secp256k1_fe_t x, xi, xii;
    int i;
    for (i = 0; i < 10*count; i++) {
        random_fe_non_zero(&x);
        secp256k1_fe_inv(&xi, &x);
        CHECK(check_fe_inverse(&x, &xi));
        secp256k1_fe_inv(&xii, &xi);
        CHECK(check_fe_equal(&x, &xii));
    }
}

void run_field_inv_var(void) {
    secp256k1_fe_t x, xi, xii;
    int i;
    for (i = 0; i < 10*count; i++) {
        random_fe_non_zero(&x);
        secp256k1_fe_inv_var(&xi, &x);
        CHECK(check_fe_inverse(&x, &xi));
        secp256k1_fe_inv_var(&xii, &xi);
        CHECK(check_fe_equal(&x, &xii));
    }
}

void run_field_inv_all_var(void) {
    secp256k1_fe_t x[16], xi[16], xii[16];
    int i;
    /* Check it's safe to call for 0 elements */
    secp256k1_fe_inv_all_var(0, xi, x);
    for (i = 0; i < count; i++) {
        size_t j;
        size_t len = (secp256k1_rand32() & 15) + 1;
        for (j = 0; j < len; j++)
            random_fe_non_zero(&x[j]);
        secp256k1_fe_inv_all_var(len, xi, x);
        for (j = 0; j < len; j++)
            CHECK(check_fe_inverse(&x[j], &xi[j]));
        secp256k1_fe_inv_all_var(len, xii, xi);
        for (j = 0; j < len; j++)
            CHECK(check_fe_equal(&x[j], &xii[j]));
    }
}

void run_sqr(void) {
    secp256k1_fe_t x, s;

    {
        int i;
        secp256k1_fe_set_int(&x, 1);
        secp256k1_fe_negate(&x, &x, 1);

        for (i = 1; i <= 512; ++i) {
            secp256k1_fe_mul_int(&x, 2);
            secp256k1_fe_normalize(&x);
            secp256k1_fe_sqr(&s, &x);
        }
    }
}

void test_sqrt(const secp256k1_fe_t *a, const secp256k1_fe_t *k) {
    secp256k1_fe_t r1, r2;
    int v = secp256k1_fe_sqrt_var(&r1, a);
    CHECK((v == 0) == (k == NULL));

    if (k != NULL) {
        /* Check that the returned root is +/- the given known answer */
        secp256k1_fe_negate(&r2, &r1, 1);
        secp256k1_fe_add(&r1, k); secp256k1_fe_add(&r2, k);
        secp256k1_fe_normalize(&r1); secp256k1_fe_normalize(&r2);
        CHECK(secp256k1_fe_is_zero(&r1) || secp256k1_fe_is_zero(&r2));
    }
}

void run_sqrt(void) {
    secp256k1_fe_t ns, x, s, t;
    int i;

    /* Check sqrt(0) is 0 */
    secp256k1_fe_set_int(&x, 0);
    secp256k1_fe_sqr(&s, &x);
    test_sqrt(&s, &x);

    /* Check sqrt of small squares (and their negatives) */
    for (i = 1; i <= 100; i++) {
        secp256k1_fe_set_int(&x, i);
        secp256k1_fe_sqr(&s, &x);
        test_sqrt(&s, &x);
        secp256k1_fe_negate(&t, &s, 1);
        test_sqrt(&t, NULL);
    }

    /* Consistency checks for large random values */
    for (i = 0; i < 10; i++) {
        int j;
        random_fe_non_square(&ns);
        for (j = 0; j < count; j++) {
            random_fe(&x);
            secp256k1_fe_sqr(&s, &x);
            test_sqrt(&s, &x);
            secp256k1_fe_negate(&t, &s, 1);
            test_sqrt(&t, NULL);
            secp256k1_fe_mul(&t, &s, &ns);
            test_sqrt(&t, NULL);
        }
    }
}

/***** GROUP TESTS *****/

void ge_equals_ge(const secp256k1_ge_t *a, const secp256k1_ge_t *b) {
    CHECK(a->infinity == b->infinity);
    if (a->infinity)
        return;
    CHECK(secp256k1_fe_equal_var(&a->x, &b->x));
    CHECK(secp256k1_fe_equal_var(&b->y, &b->y));
}

void ge_equals_gej(const secp256k1_ge_t *a, const secp256k1_gej_t *b) {
    secp256k1_fe_t z2s;
    secp256k1_fe_t u1, u2, s1, s2;
    CHECK(a->infinity == b->infinity);
    if (a->infinity)
        return;
    /* Check a.x * b.z^2 == b.x && a.y * b.z^3 == b.y, to avoid inverses. */
    secp256k1_fe_sqr(&z2s, &b->z);
    secp256k1_fe_mul(&u1, &a->x, &z2s);
    u2 = b->x; secp256k1_fe_normalize_weak(&u2);
    secp256k1_fe_mul(&s1, &a->y, &z2s); secp256k1_fe_mul(&s1, &s1, &b->z);
    s2 = b->y; secp256k1_fe_normalize_weak(&s2);
    CHECK(secp256k1_fe_equal_var(&u1, &u2));
    CHECK(secp256k1_fe_equal_var(&s1, &s2));
}

void test_ge(void) {
    int i, i1;
    int runs = 4;
    /* Points: (infinity, p1, p1, -p1, -p1, p2, p2, -p2, -p2, p3, p3, -p3, -p3, p4, p4, -p4, -p4).
     * The second in each pair of identical points uses a random Z coordinate in the Jacobian form.
     * All magnitudes are randomized.
     * All 17*17 combinations of points are added to eachother, using all applicable methods.
     */
    secp256k1_ge_t *ge = malloc(sizeof(secp256k1_ge_t) * (1 + 4 * runs));
    secp256k1_gej_t *gej = malloc(sizeof(secp256k1_gej_t) * (1 + 4 * runs));
    secp256k1_gej_set_infinity(&gej[0]);
    secp256k1_ge_clear(&ge[0]);
    secp256k1_ge_set_gej_var(&ge[0], &gej[0]);
    for (i = 0; i < runs; i++) {
        int j;
        secp256k1_ge_t g;
        random_group_element_test(&g);
        ge[1 + 4 * i] = g;
        ge[2 + 4 * i] = g;
        secp256k1_ge_neg(&ge[3 + 4 * i], &g);
        secp256k1_ge_neg(&ge[4 + 4 * i], &g);
        secp256k1_gej_set_ge(&gej[1 + 4 * i], &ge[1 + 4 * i]);
        random_group_element_jacobian_test(&gej[2 + 4 * i], &ge[2 + 4 * i]);
        secp256k1_gej_set_ge(&gej[3 + 4 * i], &ge[3 + 4 * i]);
        random_group_element_jacobian_test(&gej[4 + 4 * i], &ge[4 + 4 * i]);
        for (j = 0; j < 4; j++) {
            random_field_element_magnitude(&ge[1 + j + 4 * i].x);
            random_field_element_magnitude(&ge[1 + j + 4 * i].y);
            random_field_element_magnitude(&gej[1 + j + 4 * i].x);
            random_field_element_magnitude(&gej[1 + j + 4 * i].y);
            random_field_element_magnitude(&gej[1 + j + 4 * i].z);
        }
    }

    for (i1 = 0; i1 < 1 + 4 * runs; i1++) {
        int i2;
        for (i2 = 0; i2 < 1 + 4 * runs; i2++) {
            /* Compute reference result using gej + gej (var). */
            secp256k1_gej_t refj, resj;
            secp256k1_ge_t ref;
            secp256k1_gej_add_var(&refj, &gej[i1], &gej[i2]);
            secp256k1_ge_set_gej_var(&ref, &refj);

            /* Test gej + ge (var). */
            secp256k1_gej_add_ge_var(&resj, &gej[i1], &ge[i2]);
            ge_equals_gej(&ref, &resj);

            /* Test gej + ge (const). */
            if (i2 != 0) {
                /* secp256k1_gej_add_ge does not support its second argument being infinity. */
                secp256k1_gej_add_ge(&resj, &gej[i1], &ge[i2]);
                ge_equals_gej(&ref, &resj);
            }

            /* Test doubling (var). */
            if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 == ((i2 + 3)%4)/2)) {
                /* Normal doubling. */
                secp256k1_gej_double_var(&resj, &gej[i1]);
                ge_equals_gej(&ref, &resj);
                secp256k1_gej_double_var(&resj, &gej[i2]);
                ge_equals_gej(&ref, &resj);
            }

            /* Test adding opposites. */
            if ((i1 == 0 && i2 == 0) || ((i1 + 3)/4 == (i2 + 3)/4 && ((i1 + 3)%4)/2 != ((i2 + 3)%4)/2)) {
                CHECK(secp256k1_ge_is_infinity(&ref));
            }

            /* Test adding infinity. */
            if (i1 == 0) {
                CHECK(secp256k1_ge_is_infinity(&ge[i1]));
                CHECK(secp256k1_gej_is_infinity(&gej[i1]));
                ge_equals_gej(&ref, &gej[i2]);
            }
            if (i2 == 0) {
                CHECK(secp256k1_ge_is_infinity(&ge[i2]));
                CHECK(secp256k1_gej_is_infinity(&gej[i2]));
                ge_equals_gej(&ref, &gej[i1]);
            }
        }
    }

    /* Test adding all points together in random order equals infinity. */
    {
        secp256k1_gej_t sum = SECP256K1_GEJ_CONST_INFINITY;
        secp256k1_gej_t *gej_shuffled = malloc((4 * runs + 1) * sizeof(secp256k1_gej_t));
        for (i = 0; i < 4 * runs + 1; i++) {
            gej_shuffled[i] = gej[i];
        }
        for (i = 0; i < 4 * runs + 1; i++) {
            int swap = i + secp256k1_rand32() % (4 * runs + 1 - i);
            if (swap != i) {
                secp256k1_gej_t t = gej_shuffled[i];
                gej_shuffled[i] = gej_shuffled[swap];
                gej_shuffled[swap] = t;
            }
        }
        for (i = 0; i < 4 * runs + 1; i++) {
            secp256k1_gej_add_var(&sum, &sum, &gej_shuffled[i]);
        }
        CHECK(secp256k1_gej_is_infinity(&sum));
        free(gej_shuffled);
    }

    /* Test batch gej -> ge conversion. */
    {
        secp256k1_ge_t *ge_set_all = malloc((4 * runs + 1) * sizeof(secp256k1_ge_t));
        secp256k1_ge_set_all_gej_var(4 * runs + 1, ge_set_all, gej);
        for (i = 0; i < 4 * runs + 1; i++) {
            ge_equals_gej(&ge_set_all[i], &gej[i]);
        }
        free(ge_set_all);
    }

    free(ge);
    free(gej);
}

void run_ge(void) {
    int i;
    for (i = 0; i < count * 32; i++) {
        test_ge();
    }
}

/***** ECMULT TESTS *****/

void run_ecmult_chain(void) {
    /* random starting point A (on the curve) */
    secp256k1_gej_t a = SECP256K1_GEJ_CONST(
        0x8b30bbe9, 0xae2a9906, 0x96b22f67, 0x0709dff3,
        0x727fd8bc, 0x04d3362c, 0x6c7bf458, 0xe2846004,
        0xa357ae91, 0x5c4a6528, 0x1309edf2, 0x0504740f,
        0x0eb33439, 0x90216b4f, 0x81063cb6, 0x5f2f7e0f
    );
    /* two random initial factors xn and gn */
    secp256k1_scalar_t xn = SECP256K1_SCALAR_CONST(
        0x84cc5452, 0xf7fde1ed, 0xb4d38a8c, 0xe9b1b84c,
        0xcef31f14, 0x6e569be9, 0x705d357a, 0x42985407
    );
    secp256k1_scalar_t gn = SECP256K1_SCALAR_CONST(
        0xa1e58d22, 0x553dcd42, 0xb2398062, 0x5d4c57a9,
        0x6e9323d4, 0x2b3152e5, 0xca2c3990, 0xedc7c9de
    );
    /* two small multipliers to be applied to xn and gn in every iteration: */
    static const secp256k1_scalar_t xf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x1337);
    static const secp256k1_scalar_t gf = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0x7113);
    /* accumulators with the resulting coefficients to A and G */
    secp256k1_scalar_t ae = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
    secp256k1_scalar_t ge = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);
    /* actual points */
    secp256k1_gej_t x = a;
    secp256k1_gej_t x2;
    int i;

    /* the point being computed */
    x = a;
    for (i = 0; i < 200*count; i++) {
        /* in each iteration, compute X = xn*X + gn*G; */
        secp256k1_ecmult(&x, &x, &xn, &gn);
        /* also compute ae and ge: the actual accumulated factors for A and G */
        /* if X was (ae*A+ge*G), xn*X + gn*G results in (xn*ae*A + (xn*ge+gn)*G) */
        secp256k1_scalar_mul(&ae, &ae, &xn);
        secp256k1_scalar_mul(&ge, &ge, &xn);
        secp256k1_scalar_add(&ge, &ge, &gn);
        /* modify xn and gn */
        secp256k1_scalar_mul(&xn, &xn, &xf);
        secp256k1_scalar_mul(&gn, &gn, &gf);

        /* verify */
        if (i == 19999) {
            /* expected result after 19999 iterations */
            secp256k1_gej_t rp = SECP256K1_GEJ_CONST(
                0xD6E96687, 0xF9B10D09, 0x2A6F3543, 0x9D86CEBE,
                0xA4535D0D, 0x409F5358, 0x6440BD74, 0xB933E830,
                0xB95CBCA2, 0xC77DA786, 0x539BE8FD, 0x53354D2D,
                0x3B4F566A, 0xE6580454, 0x07ED6015, 0xEE1B2A88
            );

            secp256k1_gej_neg(&rp, &rp);
            secp256k1_gej_add_var(&rp, &rp, &x);
            CHECK(secp256k1_gej_is_infinity(&rp));
        }
    }
    /* redo the computation, but directly with the resulting ae and ge coefficients: */
    secp256k1_ecmult(&x2, &a, &ae, &ge);
    secp256k1_gej_neg(&x2, &x2);
    secp256k1_gej_add_var(&x2, &x2, &x);
    CHECK(secp256k1_gej_is_infinity(&x2));
}

void test_point_times_order(const secp256k1_gej_t *point) {
    /* X * (point + G) + (order-X) * (pointer + G) = 0 */
    secp256k1_scalar_t x;
    secp256k1_scalar_t nx;
    secp256k1_gej_t res1, res2;
    secp256k1_ge_t res3;
    unsigned char pub[65];
    int psize = 65;
    random_scalar_order_test(&x);
    secp256k1_scalar_negate(&nx, &x);
    secp256k1_ecmult(&res1, point, &x, &x); /* calc res1 = x * point + x * G; */
    secp256k1_ecmult(&res2, point, &nx, &nx); /* calc res2 = (order - x) * point + (order - x) * G; */
    secp256k1_gej_add_var(&res1, &res1, &res2);
    CHECK(secp256k1_gej_is_infinity(&res1));
    CHECK(secp256k1_gej_is_valid_var(&res1) == 0);
    secp256k1_ge_set_gej(&res3, &res1);
    CHECK(secp256k1_ge_is_infinity(&res3));
    CHECK(secp256k1_ge_is_valid_var(&res3) == 0);
    CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 0) == 0);
    psize = 65;
    CHECK(secp256k1_eckey_pubkey_serialize(&res3, pub, &psize, 1) == 0);
}

void run_point_times_order(void) {
    int i;
    secp256k1_fe_t x = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 2);
    static const secp256k1_fe_t xr = SECP256K1_FE_CONST(
        0x7603CB59, 0xB0EF6C63, 0xFE608479, 0x2A0C378C,
        0xDB3233A8, 0x0F8A9A09, 0xA877DEAD, 0x31B38C45
    );
    for (i = 0; i < 500; i++) {
        secp256k1_ge_t p;
        if (secp256k1_ge_set_xo_var(&p, &x, 1)) {
            secp256k1_gej_t j;
            CHECK(secp256k1_ge_is_valid_var(&p));
            secp256k1_gej_set_ge(&j, &p);
            CHECK(secp256k1_gej_is_valid_var(&j));
            test_point_times_order(&j);
        }
        secp256k1_fe_sqr(&x, &x);
    }
    secp256k1_fe_normalize_var(&x);
    CHECK(secp256k1_fe_equal_var(&x, &xr));
}

void test_wnaf(const secp256k1_scalar_t *number, int w) {
    secp256k1_scalar_t x, two, t;
    int wnaf[256];
    int zeroes = -1;
    int i;
    int bits;
    secp256k1_scalar_set_int(&x, 0);
    secp256k1_scalar_set_int(&two, 2);
    bits = secp256k1_ecmult_wnaf(wnaf, number, w);
    CHECK(bits <= 256);
    for (i = bits-1; i >= 0; i--) {
        int v = wnaf[i];
        secp256k1_scalar_mul(&x, &x, &two);
        if (v) {
            CHECK(zeroes == -1 || zeroes >= w-1); /* check that distance between non-zero elements is at least w-1 */
            zeroes=0;
            CHECK((v & 1) == 1); /* check non-zero elements are odd */
            CHECK(v <= (1 << (w-1)) - 1); /* check range below */
            CHECK(v >= -(1 << (w-1)) - 1); /* check range above */
        } else {
            CHECK(zeroes != -1); /* check that no unnecessary zero padding exists */
            zeroes++;
        }
        if (v >= 0) {
            secp256k1_scalar_set_int(&t, v);
        } else {
            secp256k1_scalar_set_int(&t, -v);
            secp256k1_scalar_negate(&t, &t);
        }
        secp256k1_scalar_add(&x, &x, &t);
    }
    CHECK(secp256k1_scalar_eq(&x, number)); /* check that wnaf represents number */
}

void run_wnaf(void) {
    int i;
    secp256k1_scalar_t n;
    for (i = 0; i < count; i++) {
        random_scalar_order(&n);
        if (i % 1)
            secp256k1_scalar_negate(&n, &n);
        test_wnaf(&n, 4+(i%10));
    }
}

void random_sign(secp256k1_ecdsa_sig_t *sig, const secp256k1_scalar_t *key, const secp256k1_scalar_t *msg, int *recid) {
    secp256k1_scalar_t nonce;
    do {
        random_scalar_order_test(&nonce);
    } while(!secp256k1_ecdsa_sig_sign(sig, key, msg, &nonce, recid));
}

void test_ecdsa_sign_verify(void) {
    secp256k1_gej_t pubj;
    secp256k1_ge_t pub;
    secp256k1_scalar_t one;
    secp256k1_scalar_t msg, key;
    secp256k1_ecdsa_sig_t sig;
    int recid;
    int getrec;
    random_scalar_order_test(&msg);
    random_scalar_order_test(&key);
    secp256k1_ecmult_gen(&pubj, &key);
    secp256k1_ge_set_gej(&pub, &pubj);
    getrec = secp256k1_rand32()&1;
    random_sign(&sig, &key, &msg, getrec?&recid:NULL);
    if (getrec) CHECK(recid >= 0 && recid < 4);
    CHECK(secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
    secp256k1_scalar_set_int(&one, 1);
    secp256k1_scalar_add(&msg, &msg, &one);
    CHECK(!secp256k1_ecdsa_sig_verify(&sig, &pub, &msg));
}

void run_ecdsa_sign_verify(void) {
    int i;
    for (i = 0; i < 10*count; i++) {
        test_ecdsa_sign_verify();
    }
}

/** Dummy nonce generation function that just uses a precomputed nonce, and fails if it is not accepted. Use only for testing. */
static int precomputed_nonce_function(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
    (void)msg32;
    (void)key32;
    memcpy(nonce32, data, 32);
    return (counter == 0);
}

static int nonce_function_test_fail(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
   /* Dummy nonce generator that has a fatal error on the first counter value. */
   if (counter == 0) return 0;
   return nonce_function_rfc6979(nonce32, msg32, key32, counter - 1, data);
}

static int nonce_function_test_retry(unsigned char *nonce32, const unsigned char *msg32, const unsigned char *key32, unsigned int counter, const void *data) {
   /* Dummy nonce generator that produces unacceptable nonces for the first several counter values. */
   if (counter < 3) {
       memset(nonce32, counter==0 ? 0 : 255, 32);
       if (counter == 2) nonce32[31]--;
       return 1;
   }
   if (counter < 5) {
       static const unsigned char order[] = {
           0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
           0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
           0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
           0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
       };
       memcpy(nonce32, order, 32);
       if (counter == 4) nonce32[31]++;
       return 1;
   }
   /* Retry rate of 6979 is negligible esp. as we only call this in determinstic tests. */
   /* If someone does fine a case where it retries for secp256k1, we'd like to know. */
   if (counter > 5) return 0;
   return nonce_function_rfc6979(nonce32, msg32, key32, counter - 5, data);
}

int is_empty_compact_signature(const unsigned char *sig64) {
    static const unsigned char res[64] = {0};
    return memcmp(sig64, res, 64) == 0;
}

void test_ecdsa_end_to_end(void) {
    unsigned char extra[32] = {0x00};
    unsigned char privkey[32];
    unsigned char message[32];
    unsigned char privkey2[32];
    unsigned char csignature[64];
    unsigned char signature[72];
    unsigned char signature2[72];
    unsigned char signature3[72];
    unsigned char signature4[72];
    unsigned char pubkey[65];
    unsigned char recpubkey[65];
    unsigned char seckey[300];
    int signaturelen = 72;
    int signaturelen2 = 72;
    int signaturelen3 = 72;
    int signaturelen4 = 72;
    int recid = 0;
    int recpubkeylen = 0;
    int pubkeylen = 65;
    int seckeylen = 300;

    /* Generate a random key and message. */
    {
        secp256k1_scalar_t msg, key;
        random_scalar_order_test(&msg);
        random_scalar_order_test(&key);
        secp256k1_scalar_get_b32(privkey, &key);
        secp256k1_scalar_get_b32(message, &msg);
    }

    /* Construct and verify corresponding public key. */
    CHECK(secp256k1_ec_seckey_verify(privkey) == 1);
    CHECK(secp256k1_ec_pubkey_create(pubkey, &pubkeylen, privkey, (secp256k1_rand32() & 3) != 0) == 1);
    if (secp256k1_rand32() & 1) {
        CHECK(secp256k1_ec_pubkey_decompress(pubkey, &pubkeylen));
    }
    CHECK(secp256k1_ec_pubkey_verify(pubkey, pubkeylen));

    /* Verify private key import and export. */
    CHECK(secp256k1_ec_privkey_export(privkey, seckey, &seckeylen, secp256k1_rand32() % 2) == 1);
    CHECK(secp256k1_ec_privkey_import(privkey2, seckey, seckeylen) == 1);
    CHECK(memcmp(privkey, privkey2, 32) == 0);

    /* Optionally tweak the keys using addition. */
    if (secp256k1_rand32() % 3 == 0) {
        int ret1;
        int ret2;
        unsigned char rnd[32];
        unsigned char pubkey2[65];
        int pubkeylen2 = 65;
        secp256k1_rand256_test(rnd);
        ret1 = secp256k1_ec_privkey_tweak_add(privkey, rnd);
        ret2 = secp256k1_ec_pubkey_tweak_add(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Optionally tweak the keys using multiplication. */
    if (secp256k1_rand32() % 3 == 0) {
        int ret1;
        int ret2;
        unsigned char rnd[32];
        unsigned char pubkey2[65];
        int pubkeylen2 = 65;
        secp256k1_rand256_test(rnd);
        ret1 = secp256k1_ec_privkey_tweak_mul(privkey, rnd);
        ret2 = secp256k1_ec_pubkey_tweak_mul(pubkey, pubkeylen, rnd);
        CHECK(ret1 == ret2);
        if (ret1 == 0) return;
        CHECK(secp256k1_ec_pubkey_create(pubkey2, &pubkeylen2, privkey, pubkeylen == 33) == 1);
        CHECK(memcmp(pubkey, pubkey2, pubkeylen) == 0);
    }

    /* Sign. */
    CHECK(secp256k1_ecdsa_sign(message, signature, &signaturelen, privkey, NULL, NULL) == 1);
    CHECK(signaturelen > 0);
    CHECK(secp256k1_ecdsa_sign(message, signature2, &signaturelen2, privkey, NULL, extra) == 1);
    CHECK(signaturelen2 > 0);
    extra[31] = 1;
    CHECK(secp256k1_ecdsa_sign(message, signature3, &signaturelen3, privkey, NULL, extra) == 1);
    CHECK(signaturelen3 > 0);
    extra[31] = 0;
    extra[0] = 1;
    CHECK(secp256k1_ecdsa_sign(message, signature4, &signaturelen4, privkey, NULL, extra) == 1);
    CHECK(signaturelen3 > 0);
    CHECK((signaturelen != signaturelen2) || (memcmp(signature, signature2, signaturelen) != 0));
    CHECK((signaturelen != signaturelen3) || (memcmp(signature, signature3, signaturelen) != 0));
    CHECK((signaturelen3 != signaturelen2) || (memcmp(signature3, signature2, signaturelen3) != 0));
    CHECK((signaturelen4 != signaturelen3) || (memcmp(signature4, signature3, signaturelen4) != 0));
    CHECK((signaturelen4 != signaturelen2) || (memcmp(signature4, signature2, signaturelen4) != 0));
    CHECK((signaturelen4 != signaturelen) || (memcmp(signature4, signature, signaturelen4) != 0));
    /* Verify. */
    CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) == 1);
    CHECK(secp256k1_ecdsa_verify(message, signature2, signaturelen2, pubkey, pubkeylen) == 1);
    CHECK(secp256k1_ecdsa_verify(message, signature3, signaturelen3, pubkey, pubkeylen) == 1);
    CHECK(secp256k1_ecdsa_verify(message, signature4, signaturelen4, pubkey, pubkeylen) == 1);
    /* Destroy signature and verify again. */
    signature[signaturelen - 1 - secp256k1_rand32() % 20] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_verify(message, signature, signaturelen, pubkey, pubkeylen) != 1);

    /* Compact sign. */
    CHECK(secp256k1_ecdsa_sign_compact(message, csignature, privkey, NULL, NULL, &recid) == 1);
    CHECK(!is_empty_compact_signature(csignature));
    /* Recover. */
    CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) == 1);
    CHECK(recpubkeylen == pubkeylen);
    CHECK(memcmp(pubkey, recpubkey, pubkeylen) == 0);
    /* Destroy signature and verify again. */
    csignature[secp256k1_rand32() % 64] += 1 + (secp256k1_rand32() % 255);
    CHECK(secp256k1_ecdsa_recover_compact(message, csignature, recpubkey, &recpubkeylen, pubkeylen == 33, recid) != 1 ||
          memcmp(pubkey, recpubkey, pubkeylen) != 0);
    CHECK(recpubkeylen == pubkeylen);

}

void test_random_pubkeys(void) {
    secp256k1_ge_t elem;
    secp256k1_ge_t elem2;
    unsigned char in[65];
    /* Generate some randomly sized pubkeys. */
    uint32_t r = secp256k1_rand32();
    int len = (r & 3) == 0 ? 65 : 33;
    r>>=2;
    if ((r & 3) == 0) len = (r & 252) >> 3;
    r>>=8;
    if (len == 65) {
      in[0] = (r & 2) ? 4 : (r & 1? 6 : 7);
    } else {
      in[0] = (r & 1) ? 2 : 3;
    }
    r>>=2;
    if ((r & 7) == 0) in[0] = (r & 2040) >> 3;
    r>>=11;
    if (len > 1) secp256k1_rand256(&in[1]);
    if (len > 33) secp256k1_rand256(&in[33]);
    if (secp256k1_eckey_pubkey_parse(&elem, in, len)) {
        unsigned char out[65];
        unsigned char firstb;
        int res;
        int size = len;
        firstb = in[0];
        /* If the pubkey can be parsed, it should round-trip... */
        CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, len == 33));
        CHECK(size == len);
        CHECK(memcmp(&in[1], &out[1], len-1) == 0);
        /* ... except for the type of hybrid inputs. */
        if ((in[0] != 6) && (in[0] != 7)) CHECK(in[0] == out[0]);
        size = 65;
        CHECK(secp256k1_eckey_pubkey_serialize(&elem, in, &size, 0));
        CHECK(size == 65);
        CHECK(secp256k1_eckey_pubkey_parse(&elem2, in, size));
        ge_equals_ge(&elem,&elem2);
        /* Check that the X9.62 hybrid type is checked. */
        in[0] = (r & 1) ? 6 : 7;
        res = secp256k1_eckey_pubkey_parse(&elem2, in, size);
        if (firstb == 2 || firstb == 3) {
            if (in[0] == firstb + 4) CHECK(res);
            else CHECK(!res);
        }
        if (res) {
            ge_equals_ge(&elem,&elem2);
            CHECK(secp256k1_eckey_pubkey_serialize(&elem, out, &size, 0));
            CHECK(memcmp(&in[1], &out[1], 64) == 0);
        }
    }
}

void run_random_pubkeys(void) {
    int i;
    for (i = 0; i < 10*count; i++) {
        test_random_pubkeys();
    }
}

void run_ecdsa_end_to_end(void) {
    int i;
    for (i = 0; i < 64*count; i++) {
        test_ecdsa_end_to_end();
    }
}

/* Tests several edge cases. */
void test_ecdsa_edge_cases(void) {
    const unsigned char msg32[32] = {
        'T', 'h', 'i', 's', ' ', 'i', 's', ' ',
        'a', ' ', 'v', 'e', 'r', 'y', ' ', 's',
        'e', 'c', 'r', 'e', 't', ' ', 'm', 'e',
        's', 's', 'a', 'g', 'e', '.', '.', '.'
    };
    const unsigned char sig64[64] = {
        /* Generated by signing the above message with nonce 'This is the nonce we will use...'
         * and secret key 0 (which is not valid), resulting in recid 0. */
        0x67, 0xCB, 0x28, 0x5F, 0x9C, 0xD1, 0x94, 0xE8,
        0x40, 0xD6, 0x29, 0x39, 0x7A, 0xF5, 0x56, 0x96,
        0x62, 0xFD, 0xE4, 0x46, 0x49, 0x99, 0x59, 0x63,
        0x17, 0x9A, 0x7D, 0xD1, 0x7B, 0xD2, 0x35, 0x32,
        0x4B, 0x1B, 0x7D, 0xF3, 0x4C, 0xE1, 0xF6, 0x8E,
        0x69, 0x4F, 0xF6, 0xF1, 0x1A, 0xC7, 0x51, 0xDD,
        0x7D, 0xD7, 0x3E, 0x38, 0x7E, 0xE4, 0xFC, 0x86,
        0x6E, 0x1B, 0xE8, 0xEC, 0xC7, 0xDD, 0x95, 0x57
    };
    unsigned char pubkey[65];
    int t;
    int pubkeylen = 65;
    /* signature (r,s) = (4,4), which can be recovered with all 4 recids. */
    const unsigned char sigb64[64] = {
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
        0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
    };
    unsigned char pubkeyb[33];
    int pubkeyblen = 33;
    int recid;

    CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 0));
    CHECK(secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 1));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 2));
    CHECK(!secp256k1_ecdsa_recover_compact(msg32, sig64, pubkey, &pubkeylen, 0, 3));

    for (recid = 0; recid < 4; recid++) {
        int i;
        int recid2;
        /* (4,4) encoded in DER. */
        unsigned char sigbder[8] = {0x30, 0x06, 0x02, 0x01, 0x04, 0x02, 0x01, 0x04};
        unsigned char sigcder_zr[7] = {0x30, 0x05, 0x02, 0x00, 0x02, 0x01, 0x01};
        unsigned char sigcder_zs[7] = {0x30, 0x05, 0x02, 0x01, 0x01, 0x02, 0x00};
        unsigned char sigbderalt1[39] = {
            0x30, 0x25, 0x02, 0x20, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
        };
        unsigned char sigbderalt2[39] = {
            0x30, 0x25, 0x02, 0x01, 0x04, 0x02, 0x20, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
        };
        unsigned char sigbderalt3[40] = {
            0x30, 0x26, 0x02, 0x21, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x04, 0x02, 0x01, 0x04,
        };
        unsigned char sigbderalt4[40] = {
            0x30, 0x26, 0x02, 0x01, 0x04, 0x02, 0x21, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x04,
        };
        /* (order + r,4) encoded in DER. */
        unsigned char sigbderlong[40] = {
            0x30, 0x26, 0x02, 0x21, 0x00, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
            0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xBA, 0xAE, 0xDC,
            0xE6, 0xAF, 0x48, 0xA0, 0x3B, 0xBF, 0xD2, 0x5E,
            0x8C, 0xD0, 0x36, 0x41, 0x45, 0x02, 0x01, 0x04
        };
        CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkeyb, &pubkeyblen, 1, recid));
        CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 1);
        for (recid2 = 0; recid2 < 4; recid2++) {
            unsigned char pubkey2b[33];
            int pubkey2blen = 33;
            CHECK(secp256k1_ecdsa_recover_compact(msg32, sigb64, pubkey2b, &pubkey2blen, 1, recid2));
            /* Verifying with (order + r,4) should always fail. */
            CHECK(secp256k1_ecdsa_verify(msg32, sigbderlong, sizeof(sigbderlong), pubkey2b, pubkey2blen) != 1);
        }
        /* DER parsing tests. */
        /* Zero length r/s. */
        CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zr, sizeof(sigcder_zr), pubkeyb, pubkeyblen) == -2);
        CHECK(secp256k1_ecdsa_verify(msg32, sigcder_zs, sizeof(sigcder_zs), pubkeyb, pubkeyblen) == -2);
        /* Leading zeros. */
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt1, sizeof(sigbderalt1), pubkeyb, pubkeyblen) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt2, sizeof(sigbderalt2), pubkeyb, pubkeyblen) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == 1);
        sigbderalt3[4] = 1;
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt3, sizeof(sigbderalt3), pubkeyb, pubkeyblen) == -2);
        sigbderalt4[7] = 1;
        CHECK(secp256k1_ecdsa_verify(msg32, sigbderalt4, sizeof(sigbderalt4), pubkeyb, pubkeyblen) == -2);
        /* Damage signature. */
        sigbder[7]++;
        CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) == 0);
        sigbder[7]--;
        CHECK(secp256k1_ecdsa_verify(msg32, sigbder, 6, pubkeyb, pubkeyblen) == -2);
        CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder)-1, pubkeyb, pubkeyblen) == -2);
        for(i = 0; i < 8; i++) {
            int c;
            unsigned char orig = sigbder[i];
            /*Try every single-byte change.*/
            for (c = 0; c < 256; c++) {
                if (c == orig ) continue;
                sigbder[i] = c;
                CHECK(secp256k1_ecdsa_verify(msg32, sigbder, sizeof(sigbder), pubkeyb, pubkeyblen) ==
                  (i==4 || i==7) ? 0 : -2 );
            }
            sigbder[i] = orig;
        }
    }

    /* Test the case where ECDSA recomputes a point that is infinity. */
    {
        secp256k1_gej_t keyj;
        secp256k1_ge_t key;
        secp256k1_scalar_t msg;
        secp256k1_ecdsa_sig_t sig;
        secp256k1_scalar_set_int(&sig.s, 1);
        secp256k1_scalar_negate(&sig.s, &sig.s);
        secp256k1_scalar_inverse(&sig.s, &sig.s);
        secp256k1_scalar_set_int(&sig.r, 1);
        secp256k1_ecmult_gen(&keyj, &sig.r);
        secp256k1_ge_set_gej(&key, &keyj);
        msg = sig.s;
        CHECK(secp256k1_ecdsa_sig_verify(&sig, &key, &msg) == 0);
    }

    /* Test r/s equal to zero */
    {
        /* (1,1) encoded in DER. */
        unsigned char sigcder[8] = {0x30, 0x06, 0x02, 0x01, 0x01, 0x02, 0x01, 0x01};
        unsigned char sigc64[64] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
        };
        unsigned char pubkeyc[65];
        int pubkeyclen = 65;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyc, &pubkeyclen, 0, 0) == 1);
        CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 1);
        sigcder[4] = 0;
        sigc64[31] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
        sigcder[4] = 1;
        sigcder[7] = 0;
        sigc64[31] = 1;
        sigc64[63] = 0;
        CHECK(secp256k1_ecdsa_recover_compact(msg32, sigc64, pubkeyb, &pubkeyblen, 1, 0) == 0);
        CHECK(secp256k1_ecdsa_verify(msg32, sigcder, sizeof(sigcder), pubkeyc, pubkeyclen) == 0);
    }

    /*Signature where s would be zero.*/
    {
        const unsigned char nonce[32] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
        };
        static const unsigned char nonce2[32] = {
            0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
            0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
            0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
            0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
        };
        const unsigned char key[32] = {
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
            0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,
        };
        unsigned char msg[32] = {
            0x86, 0x41, 0x99, 0x81, 0x06, 0x23, 0x44, 0x53,
            0xaa, 0x5f, 0x9d, 0x6a, 0x31, 0x78, 0xf4, 0xf7,
            0xb8, 0x12, 0xe0, 0x0b, 0x81, 0x7a, 0x77, 0x62,
            0x65, 0xdf, 0xdd, 0x31, 0xb9, 0x3e, 0x29, 0xa9,
        };
        unsigned char sig[72];
        int siglen = 72;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 0);
        CHECK(siglen == 0);
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 0);
        CHECK(siglen == 0);
        msg[31] = 0xaa;
        siglen = 72;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) == 1);
        CHECK(siglen > 0);
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce2) == 1);
        CHECK(siglen > 0);
        siglen = 10;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, precomputed_nonce_function, nonce) != 1);
        CHECK(siglen == 0);
    }

    /* Nonce function corner cases. */
    for (t = 0; t < 2; t++) {
        static const unsigned char zero[32] = {0x00};
        int i;
        unsigned char key[32];
        unsigned char msg[32];
        unsigned char sig[72];
        unsigned char sig2[72];
        secp256k1_ecdsa_sig_t s[512];
        int siglen = 72;
        int siglen2 = 72;
        int recid2;
        const unsigned char *extra;
        extra = t == 0 ? NULL : zero;
        memset(msg, 0, 32);
        msg[31] = 1;
        /* High key results in signature failure. */
        memset(key, 0xFF, 32);
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
        CHECK(siglen == 0);
        /* Zero key results in signature failure. */
        memset(key, 0, 32);
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 0);
        CHECK(siglen == 0);
        /* Nonce function failure results in signature failure. */
        key[31] = 1;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_fail, extra) == 0);
        CHECK(siglen == 0);
        CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_fail, extra, &recid) == 0);
        CHECK(is_empty_compact_signature(sig));
        /* The retry loop successfully makes its way to the first good value. */
        siglen = 72;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, nonce_function_test_retry, extra) == 1);
        CHECK(siglen > 0);
        CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, nonce_function_rfc6979, extra) == 1);
        CHECK(siglen > 0);
        CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
        CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, nonce_function_test_retry, extra, &recid) == 1);
        CHECK(!is_empty_compact_signature(sig));
        CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, nonce_function_rfc6979, extra, &recid2) == 1);
        CHECK(!is_empty_compact_signature(sig2));
        CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
        /* The default nonce function is determinstic. */
        siglen = 72;
        siglen2 = 72;
        CHECK(secp256k1_ecdsa_sign(msg, sig, &siglen, key, NULL, extra) == 1);
        CHECK(siglen > 0);
        CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
        CHECK(siglen2 > 0);
        CHECK((siglen == siglen2) && (memcmp(sig, sig2, siglen) == 0));
        CHECK(secp256k1_ecdsa_sign_compact(msg, sig, key, NULL, extra, &recid) == 1);
        CHECK(!is_empty_compact_signature(sig));
        CHECK(secp256k1_ecdsa_sign_compact(msg, sig2, key, NULL, extra, &recid2) == 1);
        CHECK(!is_empty_compact_signature(sig));
        CHECK((recid == recid2) && (memcmp(sig, sig2, 64) == 0));
        /* The default nonce function changes output with different messages. */
        for(i = 0; i < 256; i++) {
            int j;
            siglen2 = 72;
            msg[0] = i;
            CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
            CHECK(!is_empty_compact_signature(sig));
            CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
            for (j = 0; j < i; j++) {
                CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
            }
        }
        msg[0] = 0;
        msg[31] = 2;
        /* The default nonce function changes output with different keys. */
        for(i = 256; i < 512; i++) {
            int j;
            siglen2 = 72;
            key[0] = i - 256;
            CHECK(secp256k1_ecdsa_sign(msg, sig2, &siglen2, key, NULL, extra) == 1);
            CHECK(secp256k1_ecdsa_sig_parse(&s[i], sig2, siglen2));
            for (j = 0; j < i; j++) {
                CHECK(!secp256k1_scalar_eq(&s[i].r, &s[j].r));
            }
        }
        key[0] = 0;
    }

    /* Privkey export where pubkey is the point at infinity. */
    {
        unsigned char privkey[300];
        unsigned char seckey[32] = {
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff,
            0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xff, 0xfe,
            0xba, 0xae, 0xdc, 0xe6, 0xaf, 0x48, 0xa0, 0x3b,
            0xbf, 0xd2, 0x5e, 0x8c, 0xd0, 0x36, 0x41, 0x41,
        };
        int outlen = 300;
        CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 0));
        CHECK(!secp256k1_ec_privkey_export(seckey, privkey, &outlen, 1));
    }
}

void run_ecdsa_edge_cases(void) {
    test_ecdsa_edge_cases();
}

#ifdef ENABLE_OPENSSL_TESTS
EC_KEY *get_openssl_key(const secp256k1_scalar_t *key) {
    unsigned char privkey[300];
    int privkeylen;
    const unsigned char* pbegin = privkey;
    int compr = secp256k1_rand32() & 1;
    EC_KEY *ec_key = EC_KEY_new_by_curve_name(NID_secp256k1);
    CHECK(secp256k1_eckey_privkey_serialize(privkey, &privkeylen, key, compr));
    CHECK(d2i_ECPrivateKey(&ec_key, &pbegin, privkeylen));
    CHECK(EC_KEY_check_key(ec_key));
    return ec_key;
}

void test_ecdsa_openssl(void) {
    secp256k1_gej_t qj;
    secp256k1_ge_t q;
    secp256k1_ecdsa_sig_t sig;
    secp256k1_scalar_t one;
    secp256k1_scalar_t msg2;
    secp256k1_scalar_t key, msg;
    EC_KEY *ec_key;
    unsigned int sigsize = 80;
    int secp_sigsize = 80;
    unsigned char message[32];
    unsigned char signature[80];
    secp256k1_rand256_test(message);
    secp256k1_scalar_set_b32(&msg, message, NULL);
    random_scalar_order_test(&key);
    secp256k1_ecmult_gen(&qj, &key);
    secp256k1_ge_set_gej(&q, &qj);
    ec_key = get_openssl_key(&key);
    CHECK(ec_key);
    CHECK(ECDSA_sign(0, message, sizeof(message), signature, &sigsize, ec_key));
    CHECK(secp256k1_ecdsa_sig_parse(&sig, signature, sigsize));
    CHECK(secp256k1_ecdsa_sig_verify(&sig, &q, &msg));
    secp256k1_scalar_set_int(&one, 1);
    secp256k1_scalar_add(&msg2, &msg, &one);
    CHECK(!secp256k1_ecdsa_sig_verify(&sig, &q, &msg2));

    random_sign(&sig, &key, &msg, NULL);
    CHECK(secp256k1_ecdsa_sig_serialize(signature, &secp_sigsize, &sig));
    CHECK(ECDSA_verify(0, message, sizeof(message), signature, secp_sigsize, ec_key) == 1);

    EC_KEY_free(ec_key);
}

void run_ecdsa_openssl(void) {
    int i;
    for (i = 0; i < 10*count; i++) {
        test_ecdsa_openssl();
    }
}
#endif

int main(int argc, char **argv) {
    unsigned char seed16[16] = {0};
    unsigned char run32[32] = {0};
    /* find iteration count */
    if (argc > 1) {
        count = strtol(argv[1], NULL, 0);
    }

    /* find random seed */
    if (argc > 2) {
        int pos = 0;
        const char* ch = argv[2];
        while (pos < 16 && ch[0] != 0 && ch[1] != 0) {
            unsigned short sh;
            if (sscanf(ch, "%2hx", &sh)) {
                seed16[pos] = sh;
            } else {
                break;
            }
            ch += 2;
            pos++;
        }
    } else {
        FILE *frand = fopen("/dev/urandom", "r");
        if (!frand || !fread(&seed16, sizeof(seed16), 1, frand)) {
            uint64_t t = time(NULL) * (uint64_t)1337;
            seed16[0] ^= t;
            seed16[1] ^= t >> 8;
            seed16[2] ^= t >> 16;
            seed16[3] ^= t >> 24;
            seed16[4] ^= t >> 32;
            seed16[5] ^= t >> 40;
            seed16[6] ^= t >> 48;
            seed16[7] ^= t >> 56;
        }
        fclose(frand);
    }
    secp256k1_rand_seed(seed16);

    printf("test count = %i\n", count);
    printf("random seed = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", seed16[0], seed16[1], seed16[2], seed16[3], seed16[4], seed16[5], seed16[6], seed16[7], seed16[8], seed16[9], seed16[10], seed16[11], seed16[12], seed16[13], seed16[14], seed16[15]);

    /* initialize */
    secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);

    /* initializing a second time shouldn't cause any harm or memory leaks. */
    secp256k1_start(SECP256K1_START_SIGN | SECP256K1_START_VERIFY);

    run_sha256_tests();
    run_hmac_sha256_tests();
    run_rfc6979_hmac_sha256_tests();

#ifndef USE_NUM_NONE
    /* num tests */
    run_num_smalltests();
#endif

    /* scalar tests */
    run_scalar_tests();

    /* field tests */
    run_field_inv();
    run_field_inv_var();
    run_field_inv_all_var();
    run_field_misc();
    run_field_convert();
    run_sqr();
    run_sqrt();

    /* group tests */
    run_ge();

    /* ecmult tests */
    run_wnaf();
    run_point_times_order();
    run_ecmult_chain();

    /* ecdsa tests */
    run_random_pubkeys();
    run_ecdsa_sign_verify();
    run_ecdsa_end_to_end();
    run_ecdsa_edge_cases();
#ifdef ENABLE_OPENSSL_TESTS
    run_ecdsa_openssl();
#endif

    secp256k1_rand256(run32);
    printf("random run = %02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x%02x\n", run32[0], run32[1], run32[2], run32[3], run32[4], run32[5], run32[6], run32[7], run32[8], run32[9], run32[10], run32[11], run32[12], run32[13], run32[14], run32[15]);

    /* shutdown */
    secp256k1_stop();

    /* shutting down twice shouldn't cause any double frees. */
    secp256k1_stop();
    return 0;
}