aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/group_impl.h
blob: 8d8c359c5a46daa7d0f4b8dbdc2c177284335d5e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_GROUP_IMPL_H_
#define _SECP256K1_GROUP_IMPL_H_

#include <string.h>

#include "num.h"
#include "field.h"
#include "group.h"

/** Generator for secp256k1, value 'g' defined in
 *  "Standards for Efficient Cryptography" (SEC2) 2.7.1.
 */
static const secp256k1_ge_t secp256k1_ge_const_g = SECP256K1_GE_CONST(
    0x79BE667EUL, 0xF9DCBBACUL, 0x55A06295UL, 0xCE870B07UL,
    0x029BFCDBUL, 0x2DCE28D9UL, 0x59F2815BUL, 0x16F81798UL,
    0x483ADA77UL, 0x26A3C465UL, 0x5DA4FBFCUL, 0x0E1108A8UL,
    0xFD17B448UL, 0xA6855419UL, 0x9C47D08FUL, 0xFB10D4B8UL
);

static void secp256k1_ge_set_infinity(secp256k1_ge_t *r) {
    r->infinity = 1;
}

static void secp256k1_ge_set_xy(secp256k1_ge_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
    r->infinity = 0;
    r->x = *x;
    r->y = *y;
}

static int secp256k1_ge_is_infinity(const secp256k1_ge_t *a) {
    return a->infinity;
}

static void secp256k1_ge_neg(secp256k1_ge_t *r, const secp256k1_ge_t *a) {
    *r = *a;
    secp256k1_fe_normalize_weak(&r->y);
    secp256k1_fe_negate(&r->y, &r->y, 1);
}

static void secp256k1_ge_set_gej(secp256k1_ge_t *r, secp256k1_gej_t *a) {
    secp256k1_fe_t z2, z3;
    r->infinity = a->infinity;
    secp256k1_fe_inv(&a->z, &a->z);
    secp256k1_fe_sqr(&z2, &a->z);
    secp256k1_fe_mul(&z3, &a->z, &z2);
    secp256k1_fe_mul(&a->x, &a->x, &z2);
    secp256k1_fe_mul(&a->y, &a->y, &z3);
    secp256k1_fe_set_int(&a->z, 1);
    r->x = a->x;
    r->y = a->y;
}

static void secp256k1_ge_set_gej_var(secp256k1_ge_t *r, secp256k1_gej_t *a) {
    secp256k1_fe_t z2, z3;
    r->infinity = a->infinity;
    if (a->infinity) {
        return;
    }
    secp256k1_fe_inv_var(&a->z, &a->z);
    secp256k1_fe_sqr(&z2, &a->z);
    secp256k1_fe_mul(&z3, &a->z, &z2);
    secp256k1_fe_mul(&a->x, &a->x, &z2);
    secp256k1_fe_mul(&a->y, &a->y, &z3);
    secp256k1_fe_set_int(&a->z, 1);
    r->x = a->x;
    r->y = a->y;
}

static void secp256k1_ge_set_all_gej_var(size_t len, secp256k1_ge_t *r, const secp256k1_gej_t *a) {
    secp256k1_fe_t *az;
    secp256k1_fe_t *azi;
    size_t i;
    size_t count = 0;
    az = checked_malloc(sizeof(secp256k1_fe_t) * len);
    for (i = 0; i < len; i++) {
        if (!a[i].infinity) {
            az[count++] = a[i].z;
        }
    }

    azi = checked_malloc(sizeof(secp256k1_fe_t) * count);
    secp256k1_fe_inv_all_var(count, azi, az);
    free(az);

    count = 0;
    for (i = 0; i < len; i++) {
        r[i].infinity = a[i].infinity;
        if (!a[i].infinity) {
            secp256k1_fe_t zi2, zi3;
            secp256k1_fe_t *zi = &azi[count++];
            secp256k1_fe_sqr(&zi2, zi);
            secp256k1_fe_mul(&zi3, &zi2, zi);
            secp256k1_fe_mul(&r[i].x, &a[i].x, &zi2);
            secp256k1_fe_mul(&r[i].y, &a[i].y, &zi3);
        }
    }
    free(azi);
}

static void secp256k1_gej_set_infinity(secp256k1_gej_t *r) {
    r->infinity = 1;
    secp256k1_fe_set_int(&r->x, 0);
    secp256k1_fe_set_int(&r->y, 0);
    secp256k1_fe_set_int(&r->z, 0);
}

static void secp256k1_gej_set_xy(secp256k1_gej_t *r, const secp256k1_fe_t *x, const secp256k1_fe_t *y) {
    r->infinity = 0;
    r->x = *x;
    r->y = *y;
    secp256k1_fe_set_int(&r->z, 1);
}

static void secp256k1_gej_clear(secp256k1_gej_t *r) {
    r->infinity = 0;
    secp256k1_fe_clear(&r->x);
    secp256k1_fe_clear(&r->y);
    secp256k1_fe_clear(&r->z);
}

static void secp256k1_ge_clear(secp256k1_ge_t *r) {
    r->infinity = 0;
    secp256k1_fe_clear(&r->x);
    secp256k1_fe_clear(&r->y);
}

static int secp256k1_ge_set_xo_var(secp256k1_ge_t *r, const secp256k1_fe_t *x, int odd) {
    secp256k1_fe_t x2, x3, c;
    r->x = *x;
    secp256k1_fe_sqr(&x2, x);
    secp256k1_fe_mul(&x3, x, &x2);
    r->infinity = 0;
    secp256k1_fe_set_int(&c, 7);
    secp256k1_fe_add(&c, &x3);
    if (!secp256k1_fe_sqrt_var(&r->y, &c))
        return 0;
    secp256k1_fe_normalize_var(&r->y);
    if (secp256k1_fe_is_odd(&r->y) != odd)
        secp256k1_fe_negate(&r->y, &r->y, 1);
    return 1;
}

static void secp256k1_gej_set_ge(secp256k1_gej_t *r, const secp256k1_ge_t *a) {
   r->infinity = a->infinity;
   r->x = a->x;
   r->y = a->y;
   secp256k1_fe_set_int(&r->z, 1);
}

static int secp256k1_gej_eq_x_var(const secp256k1_fe_t *x, const secp256k1_gej_t *a) {
    secp256k1_fe_t r, r2;
    VERIFY_CHECK(!a->infinity);
    secp256k1_fe_sqr(&r, &a->z); secp256k1_fe_mul(&r, &r, x);
    r2 = a->x; secp256k1_fe_normalize_weak(&r2);
    return secp256k1_fe_equal_var(&r, &r2);
}

static void secp256k1_gej_neg(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
    r->infinity = a->infinity;
    r->x = a->x;
    r->y = a->y;
    r->z = a->z;
    secp256k1_fe_normalize_weak(&r->y);
    secp256k1_fe_negate(&r->y, &r->y, 1);
}

static int secp256k1_gej_is_infinity(const secp256k1_gej_t *a) {
    return a->infinity;
}

static int secp256k1_gej_is_valid_var(const secp256k1_gej_t *a) {
    secp256k1_fe_t y2, x3, z2, z6;
    if (a->infinity)
        return 0;
    /** y^2 = x^3 + 7
     *  (Y/Z^3)^2 = (X/Z^2)^3 + 7
     *  Y^2 / Z^6 = X^3 / Z^6 + 7
     *  Y^2 = X^3 + 7*Z^6
     */
    secp256k1_fe_sqr(&y2, &a->y);
    secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
    secp256k1_fe_sqr(&z2, &a->z);
    secp256k1_fe_sqr(&z6, &z2); secp256k1_fe_mul(&z6, &z6, &z2);
    secp256k1_fe_mul_int(&z6, 7);
    secp256k1_fe_add(&x3, &z6);
    secp256k1_fe_normalize_weak(&x3);
    return secp256k1_fe_equal_var(&y2, &x3);
}

static int secp256k1_ge_is_valid_var(const secp256k1_ge_t *a) {
    secp256k1_fe_t y2, x3, c;
    if (a->infinity)
        return 0;
    /* y^2 = x^3 + 7 */
    secp256k1_fe_sqr(&y2, &a->y);
    secp256k1_fe_sqr(&x3, &a->x); secp256k1_fe_mul(&x3, &x3, &a->x);
    secp256k1_fe_set_int(&c, 7);
    secp256k1_fe_add(&x3, &c);
    secp256k1_fe_normalize_weak(&x3);
    return secp256k1_fe_equal_var(&y2, &x3);
}

static void secp256k1_gej_double_var(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
    /* Operations: 3 mul, 4 sqr, 0 normalize, 12 mul_int/add/negate */
    secp256k1_fe_t t1,t2,t3,t4;
    /** For secp256k1, 2Q is infinity if and only if Q is infinity. This is because if 2Q = infinity,
     *  Q must equal -Q, or that Q.y == -(Q.y), or Q.y is 0. For a point on y^2 = x^3 + 7 to have
     *  y=0, x^3 must be -7 mod p. However, -7 has no cube root mod p.
     */
    r->infinity = a->infinity;
    if (r->infinity) {
        return;
    }

    secp256k1_fe_mul(&r->z, &a->z, &a->y);
    secp256k1_fe_mul_int(&r->z, 2);       /* Z' = 2*Y*Z (2) */
    secp256k1_fe_sqr(&t1, &a->x);
    secp256k1_fe_mul_int(&t1, 3);         /* T1 = 3*X^2 (3) */
    secp256k1_fe_sqr(&t2, &t1);           /* T2 = 9*X^4 (1) */
    secp256k1_fe_sqr(&t3, &a->y);
    secp256k1_fe_mul_int(&t3, 2);         /* T3 = 2*Y^2 (2) */
    secp256k1_fe_sqr(&t4, &t3);
    secp256k1_fe_mul_int(&t4, 2);         /* T4 = 8*Y^4 (2) */
    secp256k1_fe_mul(&t3, &t3, &a->x);    /* T3 = 2*X*Y^2 (1) */
    r->x = t3;
    secp256k1_fe_mul_int(&r->x, 4);       /* X' = 8*X*Y^2 (4) */
    secp256k1_fe_negate(&r->x, &r->x, 4); /* X' = -8*X*Y^2 (5) */
    secp256k1_fe_add(&r->x, &t2);         /* X' = 9*X^4 - 8*X*Y^2 (6) */
    secp256k1_fe_negate(&t2, &t2, 1);     /* T2 = -9*X^4 (2) */
    secp256k1_fe_mul_int(&t3, 6);         /* T3 = 12*X*Y^2 (6) */
    secp256k1_fe_add(&t3, &t2);           /* T3 = 12*X*Y^2 - 9*X^4 (8) */
    secp256k1_fe_mul(&r->y, &t1, &t3);    /* Y' = 36*X^3*Y^2 - 27*X^6 (1) */
    secp256k1_fe_negate(&t2, &t4, 2);     /* T2 = -8*Y^4 (3) */
    secp256k1_fe_add(&r->y, &t2);         /* Y' = 36*X^3*Y^2 - 27*X^6 - 8*Y^4 (4) */
}

static void secp256k1_gej_add_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_gej_t *b) {
    /* Operations: 12 mul, 4 sqr, 2 normalize, 12 mul_int/add/negate */
    secp256k1_fe_t z22, z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
    if (a->infinity) {
        *r = *b;
        return;
    }
    if (b->infinity) {
        *r = *a;
        return;
    }
    r->infinity = 0;
    secp256k1_fe_sqr(&z22, &b->z);
    secp256k1_fe_sqr(&z12, &a->z);
    secp256k1_fe_mul(&u1, &a->x, &z22);
    secp256k1_fe_mul(&u2, &b->x, &z12);
    secp256k1_fe_mul(&s1, &a->y, &z22); secp256k1_fe_mul(&s1, &s1, &b->z);
    secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
    secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
    secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
    if (secp256k1_fe_normalizes_to_zero_var(&h)) {
        if (secp256k1_fe_normalizes_to_zero_var(&i)) {
            secp256k1_gej_double_var(r, a);
        } else {
            r->infinity = 1;
        }
        return;
    }
    secp256k1_fe_sqr(&i2, &i);
    secp256k1_fe_sqr(&h2, &h);
    secp256k1_fe_mul(&h3, &h, &h2);
    secp256k1_fe_mul(&r->z, &a->z, &b->z); secp256k1_fe_mul(&r->z, &r->z, &h);
    secp256k1_fe_mul(&t, &u1, &h2);
    r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
    secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
    secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
    secp256k1_fe_add(&r->y, &h3);
}

static void secp256k1_gej_add_ge_var(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
    /* 8 mul, 3 sqr, 4 normalize, 12 mul_int/add/negate */
    secp256k1_fe_t z12, u1, u2, s1, s2, h, i, i2, h2, h3, t;
    if (a->infinity) {
        r->infinity = b->infinity;
        r->x = b->x;
        r->y = b->y;
        secp256k1_fe_set_int(&r->z, 1);
        return;
    }
    if (b->infinity) {
        *r = *a;
        return;
    }
    r->infinity = 0;
    secp256k1_fe_sqr(&z12, &a->z);
    u1 = a->x; secp256k1_fe_normalize_weak(&u1);
    secp256k1_fe_mul(&u2, &b->x, &z12);
    s1 = a->y; secp256k1_fe_normalize_weak(&s1);
    secp256k1_fe_mul(&s2, &b->y, &z12); secp256k1_fe_mul(&s2, &s2, &a->z);
    secp256k1_fe_negate(&h, &u1, 1); secp256k1_fe_add(&h, &u2);
    secp256k1_fe_negate(&i, &s1, 1); secp256k1_fe_add(&i, &s2);
    if (secp256k1_fe_normalizes_to_zero_var(&h)) {
        if (secp256k1_fe_normalizes_to_zero_var(&i)) {
            secp256k1_gej_double_var(r, a);
        } else {
            r->infinity = 1;
        }
        return;
    }
    secp256k1_fe_sqr(&i2, &i);
    secp256k1_fe_sqr(&h2, &h);
    secp256k1_fe_mul(&h3, &h, &h2);
    r->z = a->z; secp256k1_fe_mul(&r->z, &r->z, &h);
    secp256k1_fe_mul(&t, &u1, &h2);
    r->x = t; secp256k1_fe_mul_int(&r->x, 2); secp256k1_fe_add(&r->x, &h3); secp256k1_fe_negate(&r->x, &r->x, 3); secp256k1_fe_add(&r->x, &i2);
    secp256k1_fe_negate(&r->y, &r->x, 5); secp256k1_fe_add(&r->y, &t); secp256k1_fe_mul(&r->y, &r->y, &i);
    secp256k1_fe_mul(&h3, &h3, &s1); secp256k1_fe_negate(&h3, &h3, 1);
    secp256k1_fe_add(&r->y, &h3);
}

static void secp256k1_gej_add_ge(secp256k1_gej_t *r, const secp256k1_gej_t *a, const secp256k1_ge_t *b) {
    /* Operations: 7 mul, 5 sqr, 5 normalize, 19 mul_int/add/negate */
    secp256k1_fe_t zz, u1, u2, s1, s2, z, t, m, n, q, rr;
    int infinity;
    VERIFY_CHECK(!b->infinity);
    VERIFY_CHECK(a->infinity == 0 || a->infinity == 1);

    /** In:
     *    Eric Brier and Marc Joye, Weierstrass Elliptic Curves and Side-Channel Attacks.
     *    In D. Naccache and P. Paillier, Eds., Public Key Cryptography, vol. 2274 of Lecture Notes in Computer Science, pages 335-345. Springer-Verlag, 2002.
     *  we find as solution for a unified addition/doubling formula:
     *    lambda = ((x1 + x2)^2 - x1 * x2 + a) / (y1 + y2), with a = 0 for secp256k1's curve equation.
     *    x3 = lambda^2 - (x1 + x2)
     *    2*y3 = lambda * (x1 + x2 - 2 * x3) - (y1 + y2).
     *
     *  Substituting x_i = Xi / Zi^2 and yi = Yi / Zi^3, for i=1,2,3, gives:
     *    U1 = X1*Z2^2, U2 = X2*Z1^2
     *    S1 = Y1*Z2^3, S2 = Y2*Z1^3
     *    Z = Z1*Z2
     *    T = U1+U2
     *    M = S1+S2
     *    Q = T*M^2
     *    R = T^2-U1*U2
     *    X3 = 4*(R^2-Q)
     *    Y3 = 4*(R*(3*Q-2*R^2)-M^4)
     *    Z3 = 2*M*Z
     *  (Note that the paper uses xi = Xi / Zi and yi = Yi / Zi instead.)
     */

    secp256k1_fe_sqr(&zz, &a->z);                       /* z = Z1^2 */
    u1 = a->x; secp256k1_fe_normalize_weak(&u1);        /* u1 = U1 = X1*Z2^2 (1) */
    secp256k1_fe_mul(&u2, &b->x, &zz);                  /* u2 = U2 = X2*Z1^2 (1) */
    s1 = a->y; secp256k1_fe_normalize_weak(&s1);        /* s1 = S1 = Y1*Z2^3 (1) */
    secp256k1_fe_mul(&s2, &b->y, &zz);                  /* s2 = Y2*Z2^2 (1) */
    secp256k1_fe_mul(&s2, &s2, &a->z);                  /* s2 = S2 = Y2*Z1^3 (1) */
    z = a->z;                                           /* z = Z = Z1*Z2 (8) */
    t = u1; secp256k1_fe_add(&t, &u2);                  /* t = T = U1+U2 (2) */
    m = s1; secp256k1_fe_add(&m, &s2);                  /* m = M = S1+S2 (2) */
    secp256k1_fe_sqr(&n, &m);                           /* n = M^2 (1) */
    secp256k1_fe_mul(&q, &n, &t);                       /* q = Q = T*M^2 (1) */
    secp256k1_fe_sqr(&n, &n);                           /* n = M^4 (1) */
    secp256k1_fe_sqr(&rr, &t);                          /* rr = T^2 (1) */
    secp256k1_fe_mul(&t, &u1, &u2); secp256k1_fe_negate(&t, &t, 1); /* t = -U1*U2 (2) */
    secp256k1_fe_add(&rr, &t);                                      /* rr = R = T^2-U1*U2 (3) */
    secp256k1_fe_sqr(&t, &rr);                                      /* t = R^2 (1) */
    secp256k1_fe_mul(&r->z, &m, &z);                                /* r->z = M*Z (1) */
    infinity = secp256k1_fe_normalizes_to_zero(&r->z) * (1 - a->infinity);
    secp256k1_fe_mul_int(&r->z, 2 * (1 - a->infinity)); /* r->z = Z3 = 2*M*Z (2) */
    r->x = t;                                           /* r->x = R^2 (1) */
    secp256k1_fe_negate(&q, &q, 1);                     /* q = -Q (2) */
    secp256k1_fe_add(&r->x, &q);                        /* r->x = R^2-Q (3) */
    secp256k1_fe_normalize(&r->x);
    secp256k1_fe_mul_int(&q, 3);                        /* q = -3*Q (6) */
    secp256k1_fe_mul_int(&t, 2);                        /* t = 2*R^2 (2) */
    secp256k1_fe_add(&t, &q);                           /* t = 2*R^2-3*Q (8) */
    secp256k1_fe_mul(&t, &t, &rr);                      /* t = R*(2*R^2-3*Q) (1) */
    secp256k1_fe_add(&t, &n);                           /* t = R*(2*R^2-3*Q)+M^4 (2) */
    secp256k1_fe_negate(&r->y, &t, 2);                  /* r->y = R*(3*Q-2*R^2)-M^4 (3) */
    secp256k1_fe_normalize_weak(&r->y);
    secp256k1_fe_mul_int(&r->x, 4 * (1 - a->infinity)); /* r->x = X3 = 4*(R^2-Q) */
    secp256k1_fe_mul_int(&r->y, 4 * (1 - a->infinity)); /* r->y = Y3 = 4*R*(3*Q-2*R^2)-4*M^4 (4) */

    /** In case a->infinity == 1, the above code results in r->x, r->y, and r->z all equal to 0.
     *  Add b->x to x, b->y to y, and 1 to z in that case.
     */
    t = b->x; secp256k1_fe_mul_int(&t, a->infinity);
    secp256k1_fe_add(&r->x, &t);
    t = b->y; secp256k1_fe_mul_int(&t, a->infinity);
    secp256k1_fe_add(&r->y, &t);
    secp256k1_fe_set_int(&t, a->infinity);
    secp256k1_fe_add(&r->z, &t);
    r->infinity = infinity;
}

static void secp256k1_ge_to_storage(secp256k1_ge_storage_t *r, const secp256k1_ge_t *a) {
    secp256k1_fe_t x, y;
    VERIFY_CHECK(!a->infinity);
    x = a->x;
    secp256k1_fe_normalize(&x);
    y = a->y;
    secp256k1_fe_normalize(&y);
    secp256k1_fe_to_storage(&r->x, &x);
    secp256k1_fe_to_storage(&r->y, &y);
}

static void secp256k1_ge_from_storage(secp256k1_ge_t *r, const secp256k1_ge_storage_t *a) {
    secp256k1_fe_from_storage(&r->x, &a->x);
    secp256k1_fe_from_storage(&r->y, &a->y);
    r->infinity = 0;
}

static SECP256K1_INLINE void secp256k1_ge_storage_cmov(secp256k1_ge_storage_t *r, const secp256k1_ge_storage_t *a, int flag) {
    secp256k1_fe_storage_cmov(&r->x, &a->x, flag);
    secp256k1_fe_storage_cmov(&r->y, &a->y, flag);
}

#ifdef USE_ENDOMORPHISM
static void secp256k1_gej_mul_lambda(secp256k1_gej_t *r, const secp256k1_gej_t *a) {
    static const secp256k1_fe_t beta = SECP256K1_FE_CONST(
        0x7ae96a2bul, 0x657c0710ul, 0x6e64479eul, 0xac3434e9ul,
        0x9cf04975ul, 0x12f58995ul, 0xc1396c28ul, 0x719501eeul
    );
    *r = *a;
    secp256k1_fe_mul(&r->x, &r->x, &beta);
}
#endif

#endif