aboutsummaryrefslogtreecommitdiff
path: root/src/secp256k1/src/bench_internal.c
blob: 7eb3af28d731753bb62221efafd74cd430f9e4dc (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
/***********************************************************************
 * Copyright (c) 2014-2015 Pieter Wuille                               *
 * Distributed under the MIT software license, see the accompanying    *
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
 ***********************************************************************/
#include <stdio.h>

#include "secp256k1.c"
#include "../include/secp256k1.h"

#include "assumptions.h"
#include "util.h"
#include "hash_impl.h"
#include "field_impl.h"
#include "group_impl.h"
#include "scalar_impl.h"
#include "ecmult_const_impl.h"
#include "ecmult_impl.h"
#include "bench.h"

typedef struct {
    secp256k1_scalar scalar[2];
    secp256k1_fe fe[4];
    secp256k1_ge ge[2];
    secp256k1_gej gej[2];
    unsigned char data[64];
    int wnaf[256];
} bench_inv;

void bench_setup(void* arg) {
    bench_inv *data = (bench_inv*)arg;

    static const unsigned char init[4][32] = {
        /* Initializer for scalar[0], fe[0], first half of data, the X coordinate of ge[0],
           and the (implied affine) X coordinate of gej[0]. */
        {
            0x02, 0x03, 0x05, 0x07, 0x0b, 0x0d, 0x11, 0x13,
            0x17, 0x1d, 0x1f, 0x25, 0x29, 0x2b, 0x2f, 0x35,
            0x3b, 0x3d, 0x43, 0x47, 0x49, 0x4f, 0x53, 0x59,
            0x61, 0x65, 0x67, 0x6b, 0x6d, 0x71, 0x7f, 0x83
        },
        /* Initializer for scalar[1], fe[1], first half of data, the X coordinate of ge[1],
           and the (implied affine) X coordinate of gej[1]. */
        {
            0x82, 0x83, 0x85, 0x87, 0x8b, 0x8d, 0x81, 0x83,
            0x97, 0xad, 0xaf, 0xb5, 0xb9, 0xbb, 0xbf, 0xc5,
            0xdb, 0xdd, 0xe3, 0xe7, 0xe9, 0xef, 0xf3, 0xf9,
            0x11, 0x15, 0x17, 0x1b, 0x1d, 0xb1, 0xbf, 0xd3
        },
        /* Initializer for fe[2] and the Z coordinate of gej[0]. */
        {
            0x3d, 0x2d, 0xef, 0xf4, 0x25, 0x98, 0x4f, 0x5d,
            0xe2, 0xca, 0x5f, 0x41, 0x3f, 0x3f, 0xce, 0x44,
            0xaa, 0x2c, 0x53, 0x8a, 0xc6, 0x59, 0x1f, 0x38,
            0x38, 0x23, 0xe4, 0x11, 0x27, 0xc6, 0xa0, 0xe7
        },
        /* Initializer for fe[3] and the Z coordinate of gej[1]. */
        {
            0xbd, 0x21, 0xa5, 0xe1, 0x13, 0x50, 0x73, 0x2e,
            0x52, 0x98, 0xc8, 0x9e, 0xab, 0x00, 0xa2, 0x68,
            0x43, 0xf5, 0xd7, 0x49, 0x80, 0x72, 0xa7, 0xf3,
            0xd7, 0x60, 0xe6, 0xab, 0x90, 0x92, 0xdf, 0xc5
        }
    };

    secp256k1_scalar_set_b32(&data->scalar[0], init[0], NULL);
    secp256k1_scalar_set_b32(&data->scalar[1], init[1], NULL);
    secp256k1_fe_set_b32(&data->fe[0], init[0]);
    secp256k1_fe_set_b32(&data->fe[1], init[1]);
    secp256k1_fe_set_b32(&data->fe[2], init[2]);
    secp256k1_fe_set_b32(&data->fe[3], init[3]);
    CHECK(secp256k1_ge_set_xo_var(&data->ge[0], &data->fe[0], 0));
    CHECK(secp256k1_ge_set_xo_var(&data->ge[1], &data->fe[1], 1));
    secp256k1_gej_set_ge(&data->gej[0], &data->ge[0]);
    secp256k1_gej_rescale(&data->gej[0], &data->fe[2]);
    secp256k1_gej_set_ge(&data->gej[1], &data->ge[1]);
    secp256k1_gej_rescale(&data->gej[1], &data->fe[3]);
    memcpy(data->data, init[0], 32);
    memcpy(data->data + 32, init[1], 32);
}

void bench_scalar_add(void* arg, int iters) {
    int i, j = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(j <= iters);
}

void bench_scalar_negate(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_scalar_negate(&data->scalar[0], &data->scalar[0]);
    }
}

void bench_scalar_mul(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_scalar_mul(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
}

void bench_scalar_split(void* arg, int iters) {
    int i, j = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_scalar_split_lambda(&data->scalar[0], &data->scalar[1], &data->scalar[0]);
        j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(j <= iters);
}

void bench_scalar_inverse(void* arg, int iters) {
    int i, j = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_scalar_inverse(&data->scalar[0], &data->scalar[0]);
        j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(j <= iters);
}

void bench_scalar_inverse_var(void* arg, int iters) {
    int i, j = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_scalar_inverse_var(&data->scalar[0], &data->scalar[0]);
        j += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(j <= iters);
}

void bench_field_half(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_half(&data->fe[0]);
    }
}

void bench_field_normalize(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_normalize(&data->fe[0]);
    }
}

void bench_field_normalize_weak(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_normalize_weak(&data->fe[0]);
    }
}

void bench_field_mul(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_mul(&data->fe[0], &data->fe[0], &data->fe[1]);
    }
}

void bench_field_sqr(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_sqr(&data->fe[0], &data->fe[0]);
    }
}

void bench_field_inverse(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_inv(&data->fe[0], &data->fe[0]);
        secp256k1_fe_add(&data->fe[0], &data->fe[1]);
    }
}

void bench_field_inverse_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_fe_inv_var(&data->fe[0], &data->fe[0]);
        secp256k1_fe_add(&data->fe[0], &data->fe[1]);
    }
}

void bench_field_sqrt(void* arg, int iters) {
    int i, j = 0;
    bench_inv *data = (bench_inv*)arg;
    secp256k1_fe t;

    for (i = 0; i < iters; i++) {
        t = data->fe[0];
        j += secp256k1_fe_sqrt(&data->fe[0], &t);
        secp256k1_fe_add(&data->fe[0], &data->fe[1]);
    }
    CHECK(j <= iters);
}

void bench_group_double_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_gej_double_var(&data->gej[0], &data->gej[0], NULL);
    }
}

void bench_group_add_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_gej_add_var(&data->gej[0], &data->gej[0], &data->gej[1], NULL);
    }
}

void bench_group_add_affine(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_gej_add_ge(&data->gej[0], &data->gej[0], &data->ge[1]);
    }
}

void bench_group_add_affine_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_gej_add_ge_var(&data->gej[0], &data->gej[0], &data->ge[1], NULL);
    }
}

void bench_group_add_zinv_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        secp256k1_gej_add_zinv_var(&data->gej[0], &data->gej[0], &data->ge[1], &data->gej[0].y);
    }
}

void bench_group_to_affine_var(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; ++i) {
        secp256k1_ge_set_gej_var(&data->ge[1], &data->gej[0]);
        /* Use the output affine X/Y coordinates to vary the input X/Y/Z coordinates.
           Note that the resulting coordinates will generally not correspond to a point
           on the curve, but this is not a problem for the code being benchmarked here.
           Adding and normalizing have less overhead than EC operations (which could
           guarantee the point remains on the curve). */
        secp256k1_fe_add(&data->gej[0].x, &data->ge[1].y);
        secp256k1_fe_add(&data->gej[0].y, &data->fe[2]);
        secp256k1_fe_add(&data->gej[0].z, &data->ge[1].x);
        secp256k1_fe_normalize_var(&data->gej[0].x);
        secp256k1_fe_normalize_var(&data->gej[0].y);
        secp256k1_fe_normalize_var(&data->gej[0].z);
    }
}

void bench_ecmult_wnaf(void* arg, int iters) {
    int i, bits = 0, overflow = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        bits += secp256k1_ecmult_wnaf(data->wnaf, 256, &data->scalar[0], WINDOW_A);
        overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(overflow >= 0);
    CHECK(bits <= 256*iters);
}

void bench_wnaf_const(void* arg, int iters) {
    int i, bits = 0, overflow = 0;
    bench_inv *data = (bench_inv*)arg;

    for (i = 0; i < iters; i++) {
        bits += secp256k1_wnaf_const(data->wnaf, &data->scalar[0], WINDOW_A, 256);
        overflow += secp256k1_scalar_add(&data->scalar[0], &data->scalar[0], &data->scalar[1]);
    }
    CHECK(overflow >= 0);
    CHECK(bits <= 256*iters);
}


void bench_sha256(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;
    secp256k1_sha256 sha;

    for (i = 0; i < iters; i++) {
        secp256k1_sha256_initialize(&sha);
        secp256k1_sha256_write(&sha, data->data, 32);
        secp256k1_sha256_finalize(&sha, data->data);
    }
}

void bench_hmac_sha256(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;
    secp256k1_hmac_sha256 hmac;

    for (i = 0; i < iters; i++) {
        secp256k1_hmac_sha256_initialize(&hmac, data->data, 32);
        secp256k1_hmac_sha256_write(&hmac, data->data, 32);
        secp256k1_hmac_sha256_finalize(&hmac, data->data);
    }
}

void bench_rfc6979_hmac_sha256(void* arg, int iters) {
    int i;
    bench_inv *data = (bench_inv*)arg;
    secp256k1_rfc6979_hmac_sha256 rng;

    for (i = 0; i < iters; i++) {
        secp256k1_rfc6979_hmac_sha256_initialize(&rng, data->data, 64);
        secp256k1_rfc6979_hmac_sha256_generate(&rng, data->data, 32);
    }
}

void bench_context_verify(void* arg, int iters) {
    int i;
    (void)arg;
    for (i = 0; i < iters; i++) {
        secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_VERIFY));
    }
}

void bench_context_sign(void* arg, int iters) {
    int i;
    (void)arg;
    for (i = 0; i < iters; i++) {
        secp256k1_context_destroy(secp256k1_context_create(SECP256K1_CONTEXT_SIGN));
    }
}

int main(int argc, char **argv) {
    bench_inv data;
    int iters = get_iters(20000);
    int d = argc == 1; /* default */
    print_output_table_header_row();

    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "add")) run_benchmark("scalar_add", bench_scalar_add, bench_setup, NULL, &data, 10, iters*100);
    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "negate")) run_benchmark("scalar_negate", bench_scalar_negate, bench_setup, NULL, &data, 10, iters*100);
    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "mul")) run_benchmark("scalar_mul", bench_scalar_mul, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "split")) run_benchmark("scalar_split", bench_scalar_split, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse", bench_scalar_inverse, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "scalar") || have_flag(argc, argv, "inverse")) run_benchmark("scalar_inverse_var", bench_scalar_inverse_var, bench_setup, NULL, &data, 10, iters);

    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "half")) run_benchmark("field_half", bench_field_half, bench_setup, NULL, &data, 10, iters*100);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize", bench_field_normalize, bench_setup, NULL, &data, 10, iters*100);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "normalize")) run_benchmark("field_normalize_weak", bench_field_normalize_weak, bench_setup, NULL, &data, 10, iters*100);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqr")) run_benchmark("field_sqr", bench_field_sqr, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "mul")) run_benchmark("field_mul", bench_field_mul, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse", bench_field_inverse, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "inverse")) run_benchmark("field_inverse_var", bench_field_inverse_var, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "field") || have_flag(argc, argv, "sqrt")) run_benchmark("field_sqrt", bench_field_sqrt, bench_setup, NULL, &data, 10, iters);

    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "double")) run_benchmark("group_double_var", bench_group_double_var, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_var", bench_group_add_var, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine", bench_group_add_affine, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_affine_var", bench_group_add_affine_var, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "add")) run_benchmark("group_add_zinv_var", bench_group_add_zinv_var, bench_setup, NULL, &data, 10, iters*10);
    if (d || have_flag(argc, argv, "group") || have_flag(argc, argv, "to_affine")) run_benchmark("group_to_affine_var", bench_group_to_affine_var, bench_setup, NULL, &data, 10, iters);

    if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("wnaf_const", bench_wnaf_const, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "ecmult") || have_flag(argc, argv, "wnaf")) run_benchmark("ecmult_wnaf", bench_ecmult_wnaf, bench_setup, NULL, &data, 10, iters);

    if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "sha256")) run_benchmark("hash_sha256", bench_sha256, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "hmac")) run_benchmark("hash_hmac_sha256", bench_hmac_sha256, bench_setup, NULL, &data, 10, iters);
    if (d || have_flag(argc, argv, "hash") || have_flag(argc, argv, "rng6979")) run_benchmark("hash_rfc6979_hmac_sha256", bench_rfc6979_hmac_sha256, bench_setup, NULL, &data, 10, iters);

    if (d || have_flag(argc, argv, "context") || have_flag(argc, argv, "verify")) run_benchmark("context_verify", bench_context_verify, bench_setup, NULL, &data, 10, 1 + iters/1000);
    if (d || have_flag(argc, argv, "context") || have_flag(argc, argv, "sign")) run_benchmark("context_sign", bench_context_sign, bench_setup, NULL, &data, 10, 1 + iters/100);

    return 0;
}