1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
|
# Prover implementation for Weierstrass curves of the form
# y^2 = x^3 + A * x + B, specifically with a = 0 and b = 7, with group laws
# operating on affine and Jacobian coordinates, including the point at infinity
# represented by a 4th variable in coordinates.
load("group_prover.sage")
class affinepoint:
def __init__(self, x, y, infinity=0):
self.x = x
self.y = y
self.infinity = infinity
def __str__(self):
return "affinepoint(x=%s,y=%s,inf=%s)" % (self.x, self.y, self.infinity)
class jacobianpoint:
def __init__(self, x, y, z, infinity=0):
self.X = x
self.Y = y
self.Z = z
self.Infinity = infinity
def __str__(self):
return "jacobianpoint(X=%s,Y=%s,Z=%s,inf=%s)" % (self.X, self.Y, self.Z, self.Infinity)
def point_at_infinity():
return jacobianpoint(1, 1, 1, 1)
def negate(p):
if p.__class__ == affinepoint:
return affinepoint(p.x, -p.y)
if p.__class__ == jacobianpoint:
return jacobianpoint(p.X, -p.Y, p.Z)
assert(False)
def on_weierstrass_curve(A, B, p):
"""Return a set of zero-expressions for an affine point to be on the curve"""
return constraints(zero={p.x^3 + A*p.x + B - p.y^2: 'on_curve'})
def tangential_to_weierstrass_curve(A, B, p12, p3):
"""Return a set of zero-expressions for ((x12,y12),(x3,y3)) to be a line that is tangential to the curve at (x12,y12)"""
return constraints(zero={
(p12.y - p3.y) * (p12.y * 2) - (p12.x^2 * 3 + A) * (p12.x - p3.x): 'tangential_to_curve'
})
def colinear(p1, p2, p3):
"""Return a set of zero-expressions for ((x1,y1),(x2,y2),(x3,y3)) to be collinear"""
return constraints(zero={
(p1.y - p2.y) * (p1.x - p3.x) - (p1.y - p3.y) * (p1.x - p2.x): 'colinear_1',
(p2.y - p3.y) * (p2.x - p1.x) - (p2.y - p1.y) * (p2.x - p3.x): 'colinear_2',
(p3.y - p1.y) * (p3.x - p2.x) - (p3.y - p2.y) * (p3.x - p1.x): 'colinear_3'
})
def good_affine_point(p):
return constraints(nonzero={p.x : 'nonzero_x', p.y : 'nonzero_y'})
def good_jacobian_point(p):
return constraints(nonzero={p.X : 'nonzero_X', p.Y : 'nonzero_Y', p.Z^6 : 'nonzero_Z'})
def good_point(p):
return constraints(nonzero={p.Z^6 : 'nonzero_X'})
def finite(p, *affine_fns):
con = good_point(p) + constraints(zero={p.Infinity : 'finite_point'})
if p.Z != 0:
return con + reduce(lambda a, b: a + b, (f(affinepoint(p.X / p.Z^2, p.Y / p.Z^3)) for f in affine_fns), con)
else:
return con
def infinite(p):
return constraints(nonzero={p.Infinity : 'infinite_point'})
def law_jacobian_weierstrass_add(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian add, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(nonzero={pa.x - pb.x : 'different_x'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
colinear(pa, pb, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_double(A, B, pa, pb, pA, pB, pC):
"""Check whether the passed set of coordinates is a valid Jacobian doubling, given assumptions"""
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y - pb.y : 'equal_y'}))
require = (finite(pC, lambda pc: on_weierstrass_curve(A, B, pc) +
tangential_to_weierstrass_curve(A, B, pa, negate(pc))))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_opposites(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
on_weierstrass_curve(A, B, pb) +
finite(pA) +
finite(pB) +
constraints(zero={pa.x - pb.x : 'equal_x', pa.y + pb.y : 'opposite_y'}))
require = infinite(pC)
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_a(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pb) +
infinite(pA) +
finite(pB))
require = finite(pC, lambda pc: constraints(zero={pc.x - pb.x : 'c.x=b.x', pc.y - pb.y : 'c.y=b.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_b(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
on_weierstrass_curve(A, B, pa) +
infinite(pB) +
finite(pA))
require = finite(pC, lambda pc: constraints(zero={pc.x - pa.x : 'c.x=a.x', pc.y - pa.y : 'c.y=a.y'}))
return (assumeLaw, require)
def law_jacobian_weierstrass_add_infinite_ab(A, B, pa, pb, pA, pB, pC):
assumeLaw = (good_affine_point(pa) +
good_affine_point(pb) +
good_jacobian_point(pA) +
good_jacobian_point(pB) +
infinite(pA) +
infinite(pB))
require = infinite(pC)
return (assumeLaw, require)
laws_jacobian_weierstrass = {
'add': law_jacobian_weierstrass_add,
'double': law_jacobian_weierstrass_double,
'add_opposite': law_jacobian_weierstrass_add_opposites,
'add_infinite_a': law_jacobian_weierstrass_add_infinite_a,
'add_infinite_b': law_jacobian_weierstrass_add_infinite_b,
'add_infinite_ab': law_jacobian_weierstrass_add_infinite_ab
}
def check_exhaustive_jacobian_weierstrass(name, A, B, branches, formula, p):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve, by executing and validating the result for every possible addition in a prime field"""
F = Integers(p)
print("Formula %s on Z%i:" % (name, p))
points = []
for x in range(0, p):
for y in range(0, p):
point = affinepoint(F(x), F(y))
r, e = concrete_verify(on_weierstrass_curve(A, B, point))
if r:
points.append(point)
ret = True
for za in range(1, p):
for zb in range(1, p):
for pa in points:
for pb in points:
for ia in range(2):
for ib in range(2):
pA = jacobianpoint(pa.x * F(za)^2, pa.y * F(za)^3, F(za), ia)
pB = jacobianpoint(pb.x * F(zb)^2, pb.y * F(zb)^3, F(zb), ib)
for branch in range(0, branches):
assumeAssert, assumeBranch, pC = formula(branch, pA, pB)
pC.X = F(pC.X)
pC.Y = F(pC.Y)
pC.Z = F(pC.Z)
pC.Infinity = F(pC.Infinity)
r, e = concrete_verify(assumeAssert + assumeBranch)
if r:
match = False
for key in laws_jacobian_weierstrass:
assumeLaw, require = laws_jacobian_weierstrass[key](A, B, pa, pb, pA, pB, pC)
r, e = concrete_verify(assumeLaw)
if r:
if match:
print(" multiple branches for (%s,%s,%s,%s) + (%s,%s,%s,%s)" % (pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity))
else:
match = True
r, e = concrete_verify(require)
if not r:
ret = False
print(" failure in branch %i for (%s,%s,%s,%s) + (%s,%s,%s,%s) = (%s,%s,%s,%s): %s" % (branch, pA.X, pA.Y, pA.Z, pA.Infinity, pB.X, pB.Y, pB.Z, pB.Infinity, pC.X, pC.Y, pC.Z, pC.Infinity, e))
print()
return ret
def check_symbolic_function(R, assumeAssert, assumeBranch, f, A, B, pa, pb, pA, pB, pC):
assumeLaw, require = f(A, B, pa, pb, pA, pB, pC)
return check_symbolic(R, assumeLaw, assumeAssert, assumeBranch, require)
def check_symbolic_jacobian_weierstrass(name, A, B, branches, formula):
"""Verify an implementation of addition of Jacobian points on a Weierstrass curve symbolically"""
R.<ax,bx,ay,by,Az,Bz,Ai,Bi> = PolynomialRing(QQ,8,order='invlex')
lift = lambda x: fastfrac(R,x)
ax = lift(ax)
ay = lift(ay)
Az = lift(Az)
bx = lift(bx)
by = lift(by)
Bz = lift(Bz)
Ai = lift(Ai)
Bi = lift(Bi)
pa = affinepoint(ax, ay, Ai)
pb = affinepoint(bx, by, Bi)
pA = jacobianpoint(ax * Az^2, ay * Az^3, Az, Ai)
pB = jacobianpoint(bx * Bz^2, by * Bz^3, Bz, Bi)
res = {}
for key in laws_jacobian_weierstrass:
res[key] = []
print("Formula " + name + ":")
count = 0
ret = True
for branch in range(branches):
assumeFormula, assumeBranch, pC = formula(branch, pA, pB)
assumeBranch = assumeBranch.map(lift)
assumeFormula = assumeFormula.map(lift)
pC.X = lift(pC.X)
pC.Y = lift(pC.Y)
pC.Z = lift(pC.Z)
pC.Infinity = lift(pC.Infinity)
for key in laws_jacobian_weierstrass:
success, msg = check_symbolic_function(R, assumeFormula, assumeBranch, laws_jacobian_weierstrass[key], A, B, pa, pb, pA, pB, pC)
if not success:
ret = False
res[key].append((msg, branch))
for key in res:
print(" %s:" % key)
val = res[key]
for x in val:
if x[0] is not None:
print(" branch %i: %s" % (x[1], x[0]))
print()
return ret
|