1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
|
""" Generates the constants used in secp256k1_scalar_split_lambda.
See the comments for secp256k1_scalar_split_lambda in src/scalar_impl.h for detailed explanations.
"""
load("secp256k1_params.sage")
def inf_norm(v):
"""Returns the infinity norm of a vector."""
return max(map(abs, v))
def gauss_reduction(i1, i2):
v1, v2 = i1.copy(), i2.copy()
while True:
if inf_norm(v2) < inf_norm(v1):
v1, v2 = v2, v1
# This is essentially
# m = round((v1[0]*v2[0] + v1[1]*v2[1]) / (inf_norm(v1)**2))
# (rounding to the nearest integer) without relying on floating point arithmetic.
m = ((v1[0]*v2[0] + v1[1]*v2[1]) + (inf_norm(v1)**2) // 2) // (inf_norm(v1)**2)
if m == 0:
return v1, v2
v2[0] -= m*v1[0]
v2[1] -= m*v1[1]
def find_split_constants_gauss():
"""Find constants for secp256k1_scalar_split_lamdba using gauss reduction."""
(v11, v12), (v21, v22) = gauss_reduction([0, N], [1, int(LAMBDA)])
# We use related vectors in secp256k1_scalar_split_lambda.
A1, B1 = -v21, -v11
A2, B2 = v22, -v21
return A1, B1, A2, B2
def find_split_constants_explicit_tof():
"""Find constants for secp256k1_scalar_split_lamdba using the trace of Frobenius.
See Benjamin Smith: "Easy scalar decompositions for efficient scalar multiplication on
elliptic curves and genus 2 Jacobians" (https://eprint.iacr.org/2013/672), Example 2
"""
assert P % 3 == 1 # The paper says P % 3 == 2 but that appears to be a mistake, see [10].
assert C.j_invariant() == 0
t = C.trace_of_frobenius()
c = Integer(sqrt((4*P - t**2)/3))
A1 = Integer((t - c)/2 - 1)
B1 = c
A2 = Integer((t + c)/2 - 1)
B2 = Integer(1 - (t - c)/2)
# We use a negated b values in secp256k1_scalar_split_lambda.
B1, B2 = -B1, -B2
return A1, B1, A2, B2
A1, B1, A2, B2 = find_split_constants_explicit_tof()
# For extra fun, use an independent method to recompute the constants.
assert (A1, B1, A2, B2) == find_split_constants_gauss()
# PHI : Z[l] -> Z_n where phi(a + b*l) == a + b*lambda mod n.
def PHI(a,b):
return Z(a + LAMBDA*b)
# Check that (A1, B1) and (A2, B2) are in the kernel of PHI.
assert PHI(A1, B1) == Z(0)
assert PHI(A2, B2) == Z(0)
# Check that the parallelogram generated by (A1, A2) and (B1, B2)
# is a fundamental domain by containing exactly N points.
# Since the LHS is the determinant and N != 0, this also checks that
# (A1, A2) and (B1, B2) are linearly independent. By the previous
# assertions, (A1, A2) and (B1, B2) are a basis of the kernel.
assert A1*B2 - B1*A2 == N
# Check that their components are short enough.
assert (A1 + A2)/2 < sqrt(N)
assert B1 < sqrt(N)
assert B2 < sqrt(N)
G1 = round((2**384)*B2/N)
G2 = round((2**384)*(-B1)/N)
def rnddiv2(v):
if v & 1:
v += 1
return v >> 1
def scalar_lambda_split(k):
"""Equivalent to secp256k1_scalar_lambda_split()."""
c1 = rnddiv2((k * G1) >> 383)
c2 = rnddiv2((k * G2) >> 383)
c1 = (c1 * -B1) % N
c2 = (c2 * -B2) % N
r2 = (c1 + c2) % N
r1 = (k + r2 * -LAMBDA) % N
return (r1, r2)
# The result of scalar_lambda_split can depend on the representation of k (mod n).
SPECIAL = (2**383) // G2 + 1
assert scalar_lambda_split(SPECIAL) != scalar_lambda_split(SPECIAL + N)
print(' A1 =', hex(A1))
print(' -B1 =', hex(-B1))
print(' A2 =', hex(A2))
print(' -B2 =', hex(-B2))
print(' =', hex(Z(-B2)))
print(' -LAMBDA =', hex(-LAMBDA))
print(' G1 =', hex(G1))
print(' G2 =', hex(G2))
|