aboutsummaryrefslogtreecommitdiff
path: root/src/script/sign.cpp
blob: 2f4111f7864203747b3fed13c9cbbcaf94d4e0f9 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "script/sign.h"

#include "key.h"
#include "keystore.h"
#include "policy/policy.h"
#include "primitives/transaction.h"
#include "script/standard.h"
#include "uint256.h"

#include <boost/foreach.hpp>

using namespace std;

typedef std::vector<unsigned char> valtype;

TransactionSignatureCreator::TransactionSignatureCreator(const CKeyStore* keystoreIn, const CTransaction* txToIn, unsigned int nInIn, int nHashTypeIn) : BaseSignatureCreator(keystoreIn), txTo(txToIn), nIn(nInIn), nHashType(nHashTypeIn), checker(txTo, nIn) {}

bool TransactionSignatureCreator::CreateSig(std::vector<unsigned char>& vchSig, const CKeyID& address, const CScript& scriptCode) const
{
    CKey key;
    if (!keystore->GetKey(address, key))
        return false;

    uint256 hash = SignatureHash(scriptCode, *txTo, nIn, nHashType);
    if (!key.Sign(hash, vchSig))
        return false;
    vchSig.push_back((unsigned char)nHashType);
    return true;
}

static bool Sign1(const CKeyID& address, const BaseSignatureCreator& creator, const CScript& scriptCode, CScript& scriptSigRet)
{
    vector<unsigned char> vchSig;
    if (!creator.CreateSig(vchSig, address, scriptCode))
        return false;
    scriptSigRet << vchSig;
    return true;
}

static bool SignN(const vector<valtype>& multisigdata, const BaseSignatureCreator& creator, const CScript& scriptCode, CScript& scriptSigRet)
{
    int nSigned = 0;
    int nRequired = multisigdata.front()[0];
    for (unsigned int i = 1; i < multisigdata.size()-1 && nSigned < nRequired; i++)
    {
        const valtype& pubkey = multisigdata[i];
        CKeyID keyID = CPubKey(pubkey).GetID();
        if (Sign1(keyID, creator, scriptCode, scriptSigRet))
            ++nSigned;
    }
    return nSigned==nRequired;
}

/**
 * Sign scriptPubKey using signature made with creator.
 * Signatures are returned in scriptSigRet (or returns false if scriptPubKey can't be signed),
 * unless whichTypeRet is TX_SCRIPTHASH, in which case scriptSigRet is the redemption script.
 * Returns false if scriptPubKey could not be completely satisfied.
 */
static bool SignStep(const BaseSignatureCreator& creator, const CScript& scriptPubKey,
                     CScript& scriptSigRet, txnouttype& whichTypeRet)
{
    scriptSigRet.clear();

    vector<valtype> vSolutions;
    if (!Solver(scriptPubKey, whichTypeRet, vSolutions))
        return false;

    CKeyID keyID;
    switch (whichTypeRet)
    {
    case TX_NONSTANDARD:
    case TX_NULL_DATA:
        return false;
    case TX_PUBKEY:
        keyID = CPubKey(vSolutions[0]).GetID();
        return Sign1(keyID, creator, scriptPubKey, scriptSigRet);
    case TX_PUBKEYHASH:
        keyID = CKeyID(uint160(vSolutions[0]));
        if (!Sign1(keyID, creator, scriptPubKey, scriptSigRet))
            return false;
        else
        {
            CPubKey vch;
            creator.KeyStore().GetPubKey(keyID, vch);
            scriptSigRet << ToByteVector(vch);
        }
        return true;
    case TX_SCRIPTHASH:
        return creator.KeyStore().GetCScript(uint160(vSolutions[0]), scriptSigRet);

    case TX_MULTISIG:
        scriptSigRet << OP_0; // workaround CHECKMULTISIG bug
        return (SignN(vSolutions, creator, scriptPubKey, scriptSigRet));
    }
    return false;
}

bool ProduceSignature(const BaseSignatureCreator& creator, const CScript& fromPubKey, CScript& scriptSig)
{
    txnouttype whichType;
    if (!SignStep(creator, fromPubKey, scriptSig, whichType))
        return false;

    if (whichType == TX_SCRIPTHASH)
    {
        // Solver returns the subscript that need to be evaluated;
        // the final scriptSig is the signatures from that
        // and then the serialized subscript:
        CScript subscript = scriptSig;

        txnouttype subType;
        bool fSolved =
            SignStep(creator, subscript, scriptSig, subType) && subType != TX_SCRIPTHASH;
        // Append serialized subscript whether or not it is completely signed:
        scriptSig << valtype(subscript.begin(), subscript.end());
        if (!fSolved) return false;
    }

    // Test solution
    return VerifyScript(scriptSig, fromPubKey, STANDARD_SCRIPT_VERIFY_FLAGS, creator.Checker());
}

bool SignSignature(const CKeyStore &keystore, const CScript& fromPubKey, CMutableTransaction& txTo, unsigned int nIn, int nHashType)
{
    assert(nIn < txTo.vin.size());
    CTxIn& txin = txTo.vin[nIn];

    CTransaction txToConst(txTo);
    TransactionSignatureCreator creator(&keystore, &txToConst, nIn, nHashType);

    return ProduceSignature(creator, fromPubKey, txin.scriptSig);
}

bool SignSignature(const CKeyStore &keystore, const CTransaction& txFrom, CMutableTransaction& txTo, unsigned int nIn, int nHashType)
{
    assert(nIn < txTo.vin.size());
    CTxIn& txin = txTo.vin[nIn];
    assert(txin.prevout.n < txFrom.vout.size());
    const CTxOut& txout = txFrom.vout[txin.prevout.n];

    return SignSignature(keystore, txout.scriptPubKey, txTo, nIn, nHashType);
}

static CScript PushAll(const vector<valtype>& values)
{
    CScript result;
    BOOST_FOREACH(const valtype& v, values)
        result << v;
    return result;
}

static CScript CombineMultisig(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
                               const vector<valtype>& vSolutions,
                               const vector<valtype>& sigs1, const vector<valtype>& sigs2)
{
    // Combine all the signatures we've got:
    set<valtype> allsigs;
    BOOST_FOREACH(const valtype& v, sigs1)
    {
        if (!v.empty())
            allsigs.insert(v);
    }
    BOOST_FOREACH(const valtype& v, sigs2)
    {
        if (!v.empty())
            allsigs.insert(v);
    }

    // Build a map of pubkey -> signature by matching sigs to pubkeys:
    assert(vSolutions.size() > 1);
    unsigned int nSigsRequired = vSolutions.front()[0];
    unsigned int nPubKeys = vSolutions.size()-2;
    map<valtype, valtype> sigs;
    BOOST_FOREACH(const valtype& sig, allsigs)
    {
        for (unsigned int i = 0; i < nPubKeys; i++)
        {
            const valtype& pubkey = vSolutions[i+1];
            if (sigs.count(pubkey))
                continue; // Already got a sig for this pubkey

            if (checker.CheckSig(sig, pubkey, scriptPubKey))
            {
                sigs[pubkey] = sig;
                break;
            }
        }
    }
    // Now build a merged CScript:
    unsigned int nSigsHave = 0;
    CScript result; result << OP_0; // pop-one-too-many workaround
    for (unsigned int i = 0; i < nPubKeys && nSigsHave < nSigsRequired; i++)
    {
        if (sigs.count(vSolutions[i+1]))
        {
            result << sigs[vSolutions[i+1]];
            ++nSigsHave;
        }
    }
    // Fill any missing with OP_0:
    for (unsigned int i = nSigsHave; i < nSigsRequired; i++)
        result << OP_0;

    return result;
}

static CScript CombineSignatures(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
                                 const txnouttype txType, const vector<valtype>& vSolutions,
                                 vector<valtype>& sigs1, vector<valtype>& sigs2)
{
    switch (txType)
    {
    case TX_NONSTANDARD:
    case TX_NULL_DATA:
        // Don't know anything about this, assume bigger one is correct:
        if (sigs1.size() >= sigs2.size())
            return PushAll(sigs1);
        return PushAll(sigs2);
    case TX_PUBKEY:
    case TX_PUBKEYHASH:
        // Signatures are bigger than placeholders or empty scripts:
        if (sigs1.empty() || sigs1[0].empty())
            return PushAll(sigs2);
        return PushAll(sigs1);
    case TX_SCRIPTHASH:
        if (sigs1.empty() || sigs1.back().empty())
            return PushAll(sigs2);
        else if (sigs2.empty() || sigs2.back().empty())
            return PushAll(sigs1);
        else
        {
            // Recur to combine:
            valtype spk = sigs1.back();
            CScript pubKey2(spk.begin(), spk.end());

            txnouttype txType2;
            vector<vector<unsigned char> > vSolutions2;
            Solver(pubKey2, txType2, vSolutions2);
            sigs1.pop_back();
            sigs2.pop_back();
            CScript result = CombineSignatures(pubKey2, checker, txType2, vSolutions2, sigs1, sigs2);
            result << spk;
            return result;
        }
    case TX_MULTISIG:
        return CombineMultisig(scriptPubKey, checker, vSolutions, sigs1, sigs2);
    }

    return CScript();
}

CScript CombineSignatures(const CScript& scriptPubKey, const CTransaction& txTo, unsigned int nIn,
                          const CScript& scriptSig1, const CScript& scriptSig2)
{
    TransactionSignatureChecker checker(&txTo, nIn);
    return CombineSignatures(scriptPubKey, checker, scriptSig1, scriptSig2);
}

CScript CombineSignatures(const CScript& scriptPubKey, const BaseSignatureChecker& checker,
                          const CScript& scriptSig1, const CScript& scriptSig2)
{
    txnouttype txType;
    vector<vector<unsigned char> > vSolutions;
    Solver(scriptPubKey, txType, vSolutions);

    vector<valtype> stack1;
    EvalScript(stack1, scriptSig1, SCRIPT_VERIFY_STRICTENC, BaseSignatureChecker());
    vector<valtype> stack2;
    EvalScript(stack2, scriptSig2, SCRIPT_VERIFY_STRICTENC, BaseSignatureChecker());

    return CombineSignatures(scriptPubKey, checker, txType, vSolutions, stack1, stack2);
}

namespace {
/** Dummy signature checker which accepts all signatures. */
class DummySignatureChecker : public BaseSignatureChecker
{
public:
    DummySignatureChecker() {}

    bool CheckSig(const std::vector<unsigned char>& scriptSig, const std::vector<unsigned char>& vchPubKey, const CScript& scriptCode) const
    {
        return true;
    }
};
const DummySignatureChecker dummyChecker;
}

const BaseSignatureChecker& DummySignatureCreator::Checker() const
{
    return dummyChecker;
}

bool DummySignatureCreator::CreateSig(std::vector<unsigned char>& vchSig, const CKeyID& keyid, const CScript& scriptCode) const
{
    // Create a dummy signature that is a valid DER-encoding
    vchSig.assign(72, '\000');
    vchSig[0] = 0x30;
    vchSig[1] = 69;
    vchSig[2] = 0x02;
    vchSig[3] = 33;
    vchSig[4] = 0x01;
    vchSig[4 + 33] = 0x02;
    vchSig[5 + 33] = 32;
    vchSig[6 + 33] = 0x01;
    vchSig[6 + 33 + 32] = SIGHASH_ALL;
    return true;
}