1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
|
// Copyright (c) 2018-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <script/descriptor.h>
#include <key_io.h>
#include <pubkey.h>
#include <script/script.h>
#include <script/standard.h>
#include <span.h>
#include <util/bip32.h>
#include <util/spanparsing.h>
#include <util/system.h>
#include <util/strencodings.h>
#include <util/vector.h>
#include <memory>
#include <string>
#include <vector>
namespace {
////////////////////////////////////////////////////////////////////////////
// Checksum //
////////////////////////////////////////////////////////////////////////////
// This section implements a checksum algorithm for descriptors with the
// following properties:
// * Mistakes in a descriptor string are measured in "symbol errors". The higher
// the number of symbol errors, the harder it is to detect:
// * An error substituting a character from 0123456789()[],'/*abcdefgh@:$%{} for
// another in that set always counts as 1 symbol error.
// * Note that hex encoded keys are covered by these characters. Xprvs and
// xpubs use other characters too, but already have their own checksum
// mechanism.
// * Function names like "multi()" use other characters, but mistakes in
// these would generally result in an unparsable descriptor.
// * A case error always counts as 1 symbol error.
// * Any other 1 character substitution error counts as 1 or 2 symbol errors.
// * Any 1 symbol error is always detected.
// * Any 2 or 3 symbol error in a descriptor of up to 49154 characters is always detected.
// * Any 4 symbol error in a descriptor of up to 507 characters is always detected.
// * Any 5 symbol error in a descriptor of up to 77 characters is always detected.
// * Is optimized to minimize the chance a 5 symbol error in a descriptor up to 387 characters is undetected
// * Random errors have a chance of 1 in 2**40 of being undetected.
//
// These properties are achieved by expanding every group of 3 (non checksum) characters into
// 4 GF(32) symbols, over which a cyclic code is defined.
/*
* Interprets c as 8 groups of 5 bits which are the coefficients of a degree 8 polynomial over GF(32),
* multiplies that polynomial by x, computes its remainder modulo a generator, and adds the constant term val.
*
* This generator is G(x) = x^8 + {30}x^7 + {23}x^6 + {15}x^5 + {14}x^4 + {10}x^3 + {6}x^2 + {12}x + {9}.
* It is chosen to define an cyclic error detecting code which is selected by:
* - Starting from all BCH codes over GF(32) of degree 8 and below, which by construction guarantee detecting
* 3 errors in windows up to 19000 symbols.
* - Taking all those generators, and for degree 7 ones, extend them to degree 8 by adding all degree-1 factors.
* - Selecting just the set of generators that guarantee detecting 4 errors in a window of length 512.
* - Selecting one of those with best worst-case behavior for 5 errors in windows of length up to 512.
*
* The generator and the constants to implement it can be verified using this Sage code:
* B = GF(2) # Binary field
* BP.<b> = B[] # Polynomials over the binary field
* F_mod = b**5 + b**3 + 1
* F.<f> = GF(32, modulus=F_mod, repr='int') # GF(32) definition
* FP.<x> = F[] # Polynomials over GF(32)
* E_mod = x**3 + x + F.fetch_int(8)
* E.<e> = F.extension(E_mod) # Extension field definition
* alpha = e**2743 # Choice of an element in extension field
* for p in divisors(E.order() - 1): # Verify alpha has order 32767.
* assert((alpha**p == 1) == (p % 32767 == 0))
* G = lcm([(alpha**i).minpoly() for i in [1056,1057,1058]] + [x + 1])
* print(G) # Print out the generator
* for i in [1,2,4,8,16]: # Print out {1,2,4,8,16}*(G mod x^8), packed in hex integers.
* v = 0
* for coef in reversed((F.fetch_int(i)*(G % x**8)).coefficients(sparse=True)):
* v = v*32 + coef.integer_representation()
* print("0x%x" % v)
*/
uint64_t PolyMod(uint64_t c, int val)
{
uint8_t c0 = c >> 35;
c = ((c & 0x7ffffffff) << 5) ^ val;
if (c0 & 1) c ^= 0xf5dee51989;
if (c0 & 2) c ^= 0xa9fdca3312;
if (c0 & 4) c ^= 0x1bab10e32d;
if (c0 & 8) c ^= 0x3706b1677a;
if (c0 & 16) c ^= 0x644d626ffd;
return c;
}
std::string DescriptorChecksum(const Span<const char>& span)
{
/** A character set designed such that:
* - The most common 'unprotected' descriptor characters (hex, keypaths) are in the first group of 32.
* - Case errors cause an offset that's a multiple of 32.
* - As many alphabetic characters are in the same group (while following the above restrictions).
*
* If p(x) gives the position of a character c in this character set, every group of 3 characters
* (a,b,c) is encoded as the 4 symbols (p(a) & 31, p(b) & 31, p(c) & 31, (p(a) / 32) + 3 * (p(b) / 32) + 9 * (p(c) / 32).
* This means that changes that only affect the lower 5 bits of the position, or only the higher 2 bits, will just
* affect a single symbol.
*
* As a result, within-group-of-32 errors count as 1 symbol, as do cross-group errors that don't affect
* the position within the groups.
*/
static std::string INPUT_CHARSET =
"0123456789()[],'/*abcdefgh@:$%{}"
"IJKLMNOPQRSTUVWXYZ&+-.;<=>?!^_|~"
"ijklmnopqrstuvwxyzABCDEFGH`#\"\\ ";
/** The character set for the checksum itself (same as bech32). */
static std::string CHECKSUM_CHARSET = "qpzry9x8gf2tvdw0s3jn54khce6mua7l";
uint64_t c = 1;
int cls = 0;
int clscount = 0;
for (auto ch : span) {
auto pos = INPUT_CHARSET.find(ch);
if (pos == std::string::npos) return "";
c = PolyMod(c, pos & 31); // Emit a symbol for the position inside the group, for every character.
cls = cls * 3 + (pos >> 5); // Accumulate the group numbers
if (++clscount == 3) {
// Emit an extra symbol representing the group numbers, for every 3 characters.
c = PolyMod(c, cls);
cls = 0;
clscount = 0;
}
}
if (clscount > 0) c = PolyMod(c, cls);
for (int j = 0; j < 8; ++j) c = PolyMod(c, 0); // Shift further to determine the checksum.
c ^= 1; // Prevent appending zeroes from not affecting the checksum.
std::string ret(8, ' ');
for (int j = 0; j < 8; ++j) ret[j] = CHECKSUM_CHARSET[(c >> (5 * (7 - j))) & 31];
return ret;
}
std::string AddChecksum(const std::string& str) { return str + "#" + DescriptorChecksum(str); }
////////////////////////////////////////////////////////////////////////////
// Internal representation //
////////////////////////////////////////////////////////////////////////////
typedef std::vector<uint32_t> KeyPath;
/** Interface for public key objects in descriptors. */
struct PubkeyProvider
{
protected:
//! Index of this key expression in the descriptor
//! E.g. If this PubkeyProvider is key1 in multi(2, key1, key2, key3), then m_expr_index = 0
uint32_t m_expr_index;
public:
explicit PubkeyProvider(uint32_t exp_index) : m_expr_index(exp_index) {}
virtual ~PubkeyProvider() = default;
/** Derive a public key.
* read_cache is the cache to read keys from (if not nullptr)
* write_cache is the cache to write keys to (if not nullptr)
* Caches are not exclusive but this is not tested. Currently we use them exclusively
*/
virtual bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) = 0;
/** Whether this represent multiple public keys at different positions. */
virtual bool IsRange() const = 0;
/** Get the size of the generated public key(s) in bytes (33 or 65). */
virtual size_t GetSize() const = 0;
/** Get the descriptor string form. */
virtual std::string ToString() const = 0;
/** Get the descriptor string form including private data (if available in arg). */
virtual bool ToPrivateString(const SigningProvider& arg, std::string& out) const = 0;
/** Get the descriptor string form with the xpub at the last hardened derivation */
virtual bool ToNormalizedString(const SigningProvider& arg, std::string& out, bool priv) const = 0;
/** Derive a private key, if private data is available in arg. */
virtual bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const = 0;
};
class OriginPubkeyProvider final : public PubkeyProvider
{
KeyOriginInfo m_origin;
std::unique_ptr<PubkeyProvider> m_provider;
std::string OriginString() const
{
return HexStr(m_origin.fingerprint) + FormatHDKeypath(m_origin.path);
}
public:
OriginPubkeyProvider(uint32_t exp_index, KeyOriginInfo info, std::unique_ptr<PubkeyProvider> provider) : PubkeyProvider(exp_index), m_origin(std::move(info)), m_provider(std::move(provider)) {}
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) override
{
if (!m_provider->GetPubKey(pos, arg, key, info, read_cache, write_cache)) return false;
std::copy(std::begin(m_origin.fingerprint), std::end(m_origin.fingerprint), info.fingerprint);
info.path.insert(info.path.begin(), m_origin.path.begin(), m_origin.path.end());
return true;
}
bool IsRange() const override { return m_provider->IsRange(); }
size_t GetSize() const override { return m_provider->GetSize(); }
std::string ToString() const override { return "[" + OriginString() + "]" + m_provider->ToString(); }
bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
{
std::string sub;
if (!m_provider->ToPrivateString(arg, sub)) return false;
ret = "[" + OriginString() + "]" + std::move(sub);
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& ret, bool priv) const override
{
std::string sub;
if (!m_provider->ToNormalizedString(arg, sub, priv)) return false;
// If m_provider is a BIP32PubkeyProvider, we may get a string formatted like a OriginPubkeyProvider
// In that case, we need to strip out the leading square bracket and fingerprint from the substring,
// and append that to our own origin string.
if (sub[0] == '[') {
sub = sub.substr(9);
ret = "[" + OriginString() + std::move(sub);
} else {
ret = "[" + OriginString() + "]" + std::move(sub);
}
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
return m_provider->GetPrivKey(pos, arg, key);
}
};
/** An object representing a parsed constant public key in a descriptor. */
class ConstPubkeyProvider final : public PubkeyProvider
{
CPubKey m_pubkey;
public:
ConstPubkeyProvider(uint32_t exp_index, const CPubKey& pubkey) : PubkeyProvider(exp_index), m_pubkey(pubkey) {}
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key, KeyOriginInfo& info, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) override
{
key = m_pubkey;
info.path.clear();
CKeyID keyid = m_pubkey.GetID();
std::copy(keyid.begin(), keyid.begin() + sizeof(info.fingerprint), info.fingerprint);
return true;
}
bool IsRange() const override { return false; }
size_t GetSize() const override { return m_pubkey.size(); }
std::string ToString() const override { return HexStr(m_pubkey); }
bool ToPrivateString(const SigningProvider& arg, std::string& ret) const override
{
CKey key;
if (!arg.GetKey(m_pubkey.GetID(), key)) return false;
ret = EncodeSecret(key);
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& ret, bool priv) const override
{
if (priv) return ToPrivateString(arg, ret);
ret = ToString();
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
return arg.GetKey(m_pubkey.GetID(), key);
}
};
enum class DeriveType {
NO,
UNHARDENED,
HARDENED,
};
/** An object representing a parsed extended public key in a descriptor. */
class BIP32PubkeyProvider final : public PubkeyProvider
{
// Root xpub, path, and final derivation step type being used, if any
CExtPubKey m_root_extkey;
KeyPath m_path;
DeriveType m_derive;
// Cache of the parent of the final derived pubkeys.
// Primarily useful for situations when no read_cache is provided
CExtPubKey m_cached_xpub;
bool GetExtKey(const SigningProvider& arg, CExtKey& ret) const
{
CKey key;
if (!arg.GetKey(m_root_extkey.pubkey.GetID(), key)) return false;
ret.nDepth = m_root_extkey.nDepth;
std::copy(m_root_extkey.vchFingerprint, m_root_extkey.vchFingerprint + sizeof(ret.vchFingerprint), ret.vchFingerprint);
ret.nChild = m_root_extkey.nChild;
ret.chaincode = m_root_extkey.chaincode;
ret.key = key;
return true;
}
// Derives the last xprv
bool GetDerivedExtKey(const SigningProvider& arg, CExtKey& xprv) const
{
if (!GetExtKey(arg, xprv)) return false;
for (auto entry : m_path) {
xprv.Derive(xprv, entry);
}
return true;
}
bool IsHardened() const
{
if (m_derive == DeriveType::HARDENED) return true;
for (auto entry : m_path) {
if (entry >> 31) return true;
}
return false;
}
public:
BIP32PubkeyProvider(uint32_t exp_index, const CExtPubKey& extkey, KeyPath path, DeriveType derive) : PubkeyProvider(exp_index), m_root_extkey(extkey), m_path(std::move(path)), m_derive(derive) {}
bool IsRange() const override { return m_derive != DeriveType::NO; }
size_t GetSize() const override { return 33; }
bool GetPubKey(int pos, const SigningProvider& arg, CPubKey& key_out, KeyOriginInfo& final_info_out, const DescriptorCache* read_cache = nullptr, DescriptorCache* write_cache = nullptr) override
{
// Info of parent of the to be derived pubkey
KeyOriginInfo parent_info;
CKeyID keyid = m_root_extkey.pubkey.GetID();
std::copy(keyid.begin(), keyid.begin() + sizeof(parent_info.fingerprint), parent_info.fingerprint);
parent_info.path = m_path;
// Info of the derived key itself which is copied out upon successful completion
KeyOriginInfo final_info_out_tmp = parent_info;
if (m_derive == DeriveType::UNHARDENED) final_info_out_tmp.path.push_back((uint32_t)pos);
if (m_derive == DeriveType::HARDENED) final_info_out_tmp.path.push_back(((uint32_t)pos) | 0x80000000L);
// Derive keys or fetch them from cache
CExtPubKey final_extkey = m_root_extkey;
CExtPubKey parent_extkey = m_root_extkey;
bool der = true;
if (read_cache) {
if (!read_cache->GetCachedDerivedExtPubKey(m_expr_index, pos, final_extkey)) {
if (m_derive == DeriveType::HARDENED) return false;
// Try to get the derivation parent
if (!read_cache->GetCachedParentExtPubKey(m_expr_index, parent_extkey)) return false;
final_extkey = parent_extkey;
if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
}
} else if (m_cached_xpub.pubkey.IsValid() && m_derive != DeriveType::HARDENED) {
parent_extkey = final_extkey = m_cached_xpub;
if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
} else if (IsHardened()) {
CExtKey xprv;
if (!GetDerivedExtKey(arg, xprv)) return false;
parent_extkey = xprv.Neuter();
if (m_derive == DeriveType::UNHARDENED) der = xprv.Derive(xprv, pos);
if (m_derive == DeriveType::HARDENED) der = xprv.Derive(xprv, pos | 0x80000000UL);
final_extkey = xprv.Neuter();
} else {
for (auto entry : m_path) {
der = parent_extkey.Derive(parent_extkey, entry);
assert(der);
}
final_extkey = parent_extkey;
if (m_derive == DeriveType::UNHARDENED) der = parent_extkey.Derive(final_extkey, pos);
assert(m_derive != DeriveType::HARDENED);
}
assert(der);
final_info_out = final_info_out_tmp;
key_out = final_extkey.pubkey;
// We rely on the consumer to check that m_derive isn't HARDENED as above
// But we can't have already cached something in case we read something from the cache
// and parent_extkey isn't actually the parent.
if (!m_cached_xpub.pubkey.IsValid()) m_cached_xpub = parent_extkey;
if (write_cache) {
// Only cache parent if there is any unhardened derivation
if (m_derive != DeriveType::HARDENED) {
write_cache->CacheParentExtPubKey(m_expr_index, parent_extkey);
} else if (final_info_out.path.size() > 0) {
write_cache->CacheDerivedExtPubKey(m_expr_index, pos, final_extkey);
}
}
return true;
}
std::string ToString() const override
{
std::string ret = EncodeExtPubKey(m_root_extkey) + FormatHDKeypath(m_path);
if (IsRange()) {
ret += "/*";
if (m_derive == DeriveType::HARDENED) ret += '\'';
}
return ret;
}
bool ToPrivateString(const SigningProvider& arg, std::string& out) const override
{
CExtKey key;
if (!GetExtKey(arg, key)) return false;
out = EncodeExtKey(key) + FormatHDKeypath(m_path);
if (IsRange()) {
out += "/*";
if (m_derive == DeriveType::HARDENED) out += '\'';
}
return true;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& out, bool priv) const override
{
// For hardened derivation type, just return the typical string, nothing to normalize
if (m_derive == DeriveType::HARDENED) {
if (priv) return ToPrivateString(arg, out);
out = ToString();
return true;
}
// Step backwards to find the last hardened step in the path
int i = (int)m_path.size() - 1;
for (; i >= 0; --i) {
if (m_path.at(i) >> 31) {
break;
}
}
// Either no derivation or all unhardened derivation
if (i == -1) {
if (priv) return ToPrivateString(arg, out);
out = ToString();
return true;
}
// Derive the xpub at the last hardened step
CExtKey xprv;
if (!GetExtKey(arg, xprv)) return false;
KeyOriginInfo origin;
int k = 0;
for (; k <= i; ++k) {
// Derive
xprv.Derive(xprv, m_path.at(k));
// Add to the path
origin.path.push_back(m_path.at(k));
// First derivation element, get the fingerprint for origin
if (k == 0) {
std::copy(xprv.vchFingerprint, xprv.vchFingerprint + 4, origin.fingerprint);
}
}
// Build the remaining path
KeyPath end_path;
for (; k < (int)m_path.size(); ++k) {
end_path.push_back(m_path.at(k));
}
// Build the string
std::string origin_str = HexStr(origin.fingerprint) + FormatHDKeypath(origin.path);
out = "[" + origin_str + "]" + (priv ? EncodeExtKey(xprv) : EncodeExtPubKey(xprv.Neuter())) + FormatHDKeypath(end_path);
if (IsRange()) {
out += "/*";
assert(m_derive == DeriveType::UNHARDENED);
}
return true;
}
bool GetPrivKey(int pos, const SigningProvider& arg, CKey& key) const override
{
CExtKey extkey;
if (!GetDerivedExtKey(arg, extkey)) return false;
if (m_derive == DeriveType::UNHARDENED) extkey.Derive(extkey, pos);
if (m_derive == DeriveType::HARDENED) extkey.Derive(extkey, pos | 0x80000000UL);
key = extkey.key;
return true;
}
};
/** Base class for all Descriptor implementations. */
class DescriptorImpl : public Descriptor
{
//! Public key arguments for this descriptor (size 1 for PK, PKH, WPKH; any size for Multisig).
const std::vector<std::unique_ptr<PubkeyProvider>> m_pubkey_args;
//! The string name of the descriptor function.
const std::string m_name;
protected:
//! The sub-descriptor argument (nullptr for everything but SH and WSH).
//! In doc/descriptors.m this is referred to as SCRIPT expressions sh(SCRIPT)
//! and wsh(SCRIPT), and distinct from KEY expressions and ADDR expressions.
const std::unique_ptr<DescriptorImpl> m_subdescriptor_arg;
//! Return a serialization of anything except pubkey and script arguments, to be prepended to those.
virtual std::string ToStringExtra() const { return ""; }
/** A helper function to construct the scripts for this descriptor.
*
* This function is invoked once for every CScript produced by evaluating
* m_subdescriptor_arg, or just once in case m_subdescriptor_arg is nullptr.
* @param pubkeys The evaluations of the m_pubkey_args field.
* @param script The evaluation of m_subdescriptor_arg (or nullptr when m_subdescriptor_arg is nullptr).
* @param out A FlatSigningProvider to put scripts or public keys in that are necessary to the solver.
* The script arguments to this function are automatically added, as is the origin info of the provided pubkeys.
* @return A vector with scriptPubKeys for this descriptor.
*/
virtual std::vector<CScript> MakeScripts(const std::vector<CPubKey>& pubkeys, const CScript* script, FlatSigningProvider& out) const = 0;
public:
DescriptorImpl(std::vector<std::unique_ptr<PubkeyProvider>> pubkeys, std::unique_ptr<DescriptorImpl> script, const std::string& name) : m_pubkey_args(std::move(pubkeys)), m_name(name), m_subdescriptor_arg(std::move(script)) {}
bool IsSolvable() const override
{
if (m_subdescriptor_arg) {
if (!m_subdescriptor_arg->IsSolvable()) return false;
}
return true;
}
bool IsRange() const final
{
for (const auto& pubkey : m_pubkey_args) {
if (pubkey->IsRange()) return true;
}
if (m_subdescriptor_arg) {
if (m_subdescriptor_arg->IsRange()) return true;
}
return false;
}
bool ToStringHelper(const SigningProvider* arg, std::string& out, bool priv, bool normalized) const
{
std::string extra = ToStringExtra();
size_t pos = extra.size() > 0 ? 1 : 0;
std::string ret = m_name + "(" + extra;
for (const auto& pubkey : m_pubkey_args) {
if (pos++) ret += ",";
std::string tmp;
if (normalized) {
if (!pubkey->ToNormalizedString(*arg, tmp, priv)) return false;
} else if (priv) {
if (!pubkey->ToPrivateString(*arg, tmp)) return false;
} else {
tmp = pubkey->ToString();
}
ret += std::move(tmp);
}
if (m_subdescriptor_arg) {
if (pos++) ret += ",";
std::string tmp;
if (!m_subdescriptor_arg->ToStringHelper(arg, tmp, priv, normalized)) return false;
ret += std::move(tmp);
}
out = std::move(ret) + ")";
return true;
}
std::string ToString() const final
{
std::string ret;
ToStringHelper(nullptr, ret, false, false);
return AddChecksum(ret);
}
bool ToPrivateString(const SigningProvider& arg, std::string& out) const final
{
bool ret = ToStringHelper(&arg, out, true, false);
out = AddChecksum(out);
return ret;
}
bool ToNormalizedString(const SigningProvider& arg, std::string& out, bool priv) const override final
{
bool ret = ToStringHelper(&arg, out, priv, true);
out = AddChecksum(out);
return ret;
}
bool ExpandHelper(int pos, const SigningProvider& arg, const DescriptorCache* read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache) const
{
std::vector<std::pair<CPubKey, KeyOriginInfo>> entries;
entries.reserve(m_pubkey_args.size());
// Construct temporary data in `entries` and `subscripts`, to avoid producing output in case of failure.
for (const auto& p : m_pubkey_args) {
entries.emplace_back();
if (!p->GetPubKey(pos, arg, entries.back().first, entries.back().second, read_cache, write_cache)) return false;
}
std::vector<CScript> subscripts;
if (m_subdescriptor_arg) {
FlatSigningProvider subprovider;
if (!m_subdescriptor_arg->ExpandHelper(pos, arg, read_cache, subscripts, subprovider, write_cache)) return false;
out = Merge(out, subprovider);
}
std::vector<CPubKey> pubkeys;
pubkeys.reserve(entries.size());
for (auto& entry : entries) {
pubkeys.push_back(entry.first);
out.origins.emplace(entry.first.GetID(), std::make_pair<CPubKey, KeyOriginInfo>(CPubKey(entry.first), std::move(entry.second)));
}
if (m_subdescriptor_arg) {
for (const auto& subscript : subscripts) {
out.scripts.emplace(CScriptID(subscript), subscript);
std::vector<CScript> addscripts = MakeScripts(pubkeys, &subscript, out);
for (auto& addscript : addscripts) {
output_scripts.push_back(std::move(addscript));
}
}
} else {
output_scripts = MakeScripts(pubkeys, nullptr, out);
}
return true;
}
bool Expand(int pos, const SigningProvider& provider, std::vector<CScript>& output_scripts, FlatSigningProvider& out, DescriptorCache* write_cache = nullptr) const final
{
return ExpandHelper(pos, provider, nullptr, output_scripts, out, write_cache);
}
bool ExpandFromCache(int pos, const DescriptorCache& read_cache, std::vector<CScript>& output_scripts, FlatSigningProvider& out) const final
{
return ExpandHelper(pos, DUMMY_SIGNING_PROVIDER, &read_cache, output_scripts, out, nullptr);
}
void ExpandPrivate(int pos, const SigningProvider& provider, FlatSigningProvider& out) const final
{
for (const auto& p : m_pubkey_args) {
CKey key;
if (!p->GetPrivKey(pos, provider, key)) continue;
out.keys.emplace(key.GetPubKey().GetID(), key);
}
if (m_subdescriptor_arg) {
FlatSigningProvider subprovider;
m_subdescriptor_arg->ExpandPrivate(pos, provider, subprovider);
out = Merge(out, subprovider);
}
}
Optional<OutputType> GetOutputType() const override { return nullopt; }
};
/** A parsed addr(A) descriptor. */
class AddressDescriptor final : public DescriptorImpl
{
const CTxDestination m_destination;
protected:
std::string ToStringExtra() const override { return EncodeDestination(m_destination); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, const CScript*, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(m_destination)); }
public:
AddressDescriptor(CTxDestination destination) : DescriptorImpl({}, {}, "addr"), m_destination(std::move(destination)) {}
bool IsSolvable() const final { return false; }
Optional<OutputType> GetOutputType() const override
{
switch (m_destination.index()) {
case 1 /* PKHash */:
case 2 /* ScriptHash */: return OutputType::LEGACY;
case 3 /* WitnessV0ScriptHash */:
case 4 /* WitnessV0KeyHash */:
case 5 /* WitnessUnknown */: return OutputType::BECH32;
case 0 /* CNoDestination */:
default: return nullopt;
}
}
bool IsSingleType() const final { return true; }
};
/** A parsed raw(H) descriptor. */
class RawDescriptor final : public DescriptorImpl
{
const CScript m_script;
protected:
std::string ToStringExtra() const override { return HexStr(m_script); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, const CScript*, FlatSigningProvider&) const override { return Vector(m_script); }
public:
RawDescriptor(CScript script) : DescriptorImpl({}, {}, "raw"), m_script(std::move(script)) {}
bool IsSolvable() const final { return false; }
Optional<OutputType> GetOutputType() const override
{
CTxDestination dest;
ExtractDestination(m_script, dest);
switch (dest.index()) {
case 1 /* PKHash */:
case 2 /* ScriptHash */: return OutputType::LEGACY;
case 3 /* WitnessV0ScriptHash */:
case 4 /* WitnessV0KeyHash */:
case 5 /* WitnessUnknown */: return OutputType::BECH32;
case 0 /* CNoDestination */:
default: return nullopt;
}
}
bool IsSingleType() const final { return true; }
};
/** A parsed pk(P) descriptor. */
class PKDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, const CScript*, FlatSigningProvider&) const override { return Vector(GetScriptForRawPubKey(keys[0])); }
public:
PKDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), {}, "pk") {}
bool IsSingleType() const final { return true; }
};
/** A parsed pkh(P) descriptor. */
class PKHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, const CScript*, FlatSigningProvider& out) const override
{
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
return Vector(GetScriptForDestination(PKHash(id)));
}
public:
PKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), {}, "pkh") {}
Optional<OutputType> GetOutputType() const override { return OutputType::LEGACY; }
bool IsSingleType() const final { return true; }
};
/** A parsed wpkh(P) descriptor. */
class WPKHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, const CScript*, FlatSigningProvider& out) const override
{
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
return Vector(GetScriptForDestination(WitnessV0KeyHash(id)));
}
public:
WPKHDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), {}, "wpkh") {}
Optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
bool IsSingleType() const final { return true; }
};
/** A parsed combo(P) descriptor. */
class ComboDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, const CScript*, FlatSigningProvider& out) const override
{
std::vector<CScript> ret;
CKeyID id = keys[0].GetID();
out.pubkeys.emplace(id, keys[0]);
ret.emplace_back(GetScriptForRawPubKey(keys[0])); // P2PK
ret.emplace_back(GetScriptForDestination(PKHash(id))); // P2PKH
if (keys[0].IsCompressed()) {
CScript p2wpkh = GetScriptForDestination(WitnessV0KeyHash(id));
out.scripts.emplace(CScriptID(p2wpkh), p2wpkh);
ret.emplace_back(p2wpkh);
ret.emplace_back(GetScriptForDestination(ScriptHash(p2wpkh))); // P2SH-P2WPKH
}
return ret;
}
public:
ComboDescriptor(std::unique_ptr<PubkeyProvider> prov) : DescriptorImpl(Vector(std::move(prov)), {}, "combo") {}
bool IsSingleType() const final { return false; }
};
/** A parsed multi(...) or sortedmulti(...) descriptor */
class MultisigDescriptor final : public DescriptorImpl
{
const int m_threshold;
const bool m_sorted;
protected:
std::string ToStringExtra() const override { return strprintf("%i", m_threshold); }
std::vector<CScript> MakeScripts(const std::vector<CPubKey>& keys, const CScript*, FlatSigningProvider&) const override {
if (m_sorted) {
std::vector<CPubKey> sorted_keys(keys);
std::sort(sorted_keys.begin(), sorted_keys.end());
return Vector(GetScriptForMultisig(m_threshold, sorted_keys));
}
return Vector(GetScriptForMultisig(m_threshold, keys));
}
public:
MultisigDescriptor(int threshold, std::vector<std::unique_ptr<PubkeyProvider>> providers, bool sorted = false) : DescriptorImpl(std::move(providers), {}, sorted ? "sortedmulti" : "multi"), m_threshold(threshold), m_sorted(sorted) {}
bool IsSingleType() const final { return true; }
};
/** A parsed sh(...) descriptor. */
class SHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, const CScript* script, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(ScriptHash(*script))); }
public:
SHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "sh") {}
Optional<OutputType> GetOutputType() const override
{
assert(m_subdescriptor_arg);
if (m_subdescriptor_arg->GetOutputType() == OutputType::BECH32) return OutputType::P2SH_SEGWIT;
return OutputType::LEGACY;
}
bool IsSingleType() const final { return true; }
};
/** A parsed wsh(...) descriptor. */
class WSHDescriptor final : public DescriptorImpl
{
protected:
std::vector<CScript> MakeScripts(const std::vector<CPubKey>&, const CScript* script, FlatSigningProvider&) const override { return Vector(GetScriptForDestination(WitnessV0ScriptHash(*script))); }
public:
WSHDescriptor(std::unique_ptr<DescriptorImpl> desc) : DescriptorImpl({}, std::move(desc), "wsh") {}
Optional<OutputType> GetOutputType() const override { return OutputType::BECH32; }
bool IsSingleType() const final { return true; }
};
////////////////////////////////////////////////////////////////////////////
// Parser //
////////////////////////////////////////////////////////////////////////////
enum class ParseScriptContext {
TOP,
P2SH,
P2WSH,
};
/** Parse a key path, being passed a split list of elements (the first element is ignored). */
[[nodiscard]] bool ParseKeyPath(const std::vector<Span<const char>>& split, KeyPath& out, std::string& error)
{
for (size_t i = 1; i < split.size(); ++i) {
Span<const char> elem = split[i];
bool hardened = false;
if (elem.size() > 0 && (elem[elem.size() - 1] == '\'' || elem[elem.size() - 1] == 'h')) {
elem = elem.first(elem.size() - 1);
hardened = true;
}
uint32_t p;
if (!ParseUInt32(std::string(elem.begin(), elem.end()), &p)) {
error = strprintf("Key path value '%s' is not a valid uint32", std::string(elem.begin(), elem.end()));
return false;
} else if (p > 0x7FFFFFFFUL) {
error = strprintf("Key path value %u is out of range", p);
return false;
}
out.push_back(p | (((uint32_t)hardened) << 31));
}
return true;
}
/** Parse a public key that excludes origin information. */
std::unique_ptr<PubkeyProvider> ParsePubkeyInner(uint32_t key_exp_index, const Span<const char>& sp, bool permit_uncompressed, FlatSigningProvider& out, std::string& error)
{
using namespace spanparsing;
auto split = Split(sp, '/');
std::string str(split[0].begin(), split[0].end());
if (str.size() == 0) {
error = "No key provided";
return nullptr;
}
if (split.size() == 1) {
if (IsHex(str)) {
std::vector<unsigned char> data = ParseHex(str);
CPubKey pubkey(data);
if (pubkey.IsFullyValid()) {
if (permit_uncompressed || pubkey.IsCompressed()) {
return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey);
} else {
error = "Uncompressed keys are not allowed";
return nullptr;
}
}
error = strprintf("Pubkey '%s' is invalid", str);
return nullptr;
}
CKey key = DecodeSecret(str);
if (key.IsValid()) {
if (permit_uncompressed || key.IsCompressed()) {
CPubKey pubkey = key.GetPubKey();
out.keys.emplace(pubkey.GetID(), key);
return std::make_unique<ConstPubkeyProvider>(key_exp_index, pubkey);
} else {
error = "Uncompressed keys are not allowed";
return nullptr;
}
}
}
CExtKey extkey = DecodeExtKey(str);
CExtPubKey extpubkey = DecodeExtPubKey(str);
if (!extkey.key.IsValid() && !extpubkey.pubkey.IsValid()) {
error = strprintf("key '%s' is not valid", str);
return nullptr;
}
KeyPath path;
DeriveType type = DeriveType::NO;
if (split.back() == MakeSpan("*").first(1)) {
split.pop_back();
type = DeriveType::UNHARDENED;
} else if (split.back() == MakeSpan("*'").first(2) || split.back() == MakeSpan("*h").first(2)) {
split.pop_back();
type = DeriveType::HARDENED;
}
if (!ParseKeyPath(split, path, error)) return nullptr;
if (extkey.key.IsValid()) {
extpubkey = extkey.Neuter();
out.keys.emplace(extpubkey.pubkey.GetID(), extkey.key);
}
return std::make_unique<BIP32PubkeyProvider>(key_exp_index, extpubkey, std::move(path), type);
}
/** Parse a public key including origin information (if enabled). */
std::unique_ptr<PubkeyProvider> ParsePubkey(uint32_t key_exp_index, const Span<const char>& sp, bool permit_uncompressed, FlatSigningProvider& out, std::string& error)
{
using namespace spanparsing;
auto origin_split = Split(sp, ']');
if (origin_split.size() > 2) {
error = "Multiple ']' characters found for a single pubkey";
return nullptr;
}
if (origin_split.size() == 1) return ParsePubkeyInner(key_exp_index, origin_split[0], permit_uncompressed, out, error);
if (origin_split[0].empty() || origin_split[0][0] != '[') {
error = strprintf("Key origin start '[ character expected but not found, got '%c' instead",
origin_split[0].empty() ? /** empty, implies split char */ ']' : origin_split[0][0]);
return nullptr;
}
auto slash_split = Split(origin_split[0].subspan(1), '/');
if (slash_split[0].size() != 8) {
error = strprintf("Fingerprint is not 4 bytes (%u characters instead of 8 characters)", slash_split[0].size());
return nullptr;
}
std::string fpr_hex = std::string(slash_split[0].begin(), slash_split[0].end());
if (!IsHex(fpr_hex)) {
error = strprintf("Fingerprint '%s' is not hex", fpr_hex);
return nullptr;
}
auto fpr_bytes = ParseHex(fpr_hex);
KeyOriginInfo info;
static_assert(sizeof(info.fingerprint) == 4, "Fingerprint must be 4 bytes");
assert(fpr_bytes.size() == 4);
std::copy(fpr_bytes.begin(), fpr_bytes.end(), info.fingerprint);
if (!ParseKeyPath(slash_split, info.path, error)) return nullptr;
auto provider = ParsePubkeyInner(key_exp_index, origin_split[1], permit_uncompressed, out, error);
if (!provider) return nullptr;
return std::make_unique<OriginPubkeyProvider>(key_exp_index, std::move(info), std::move(provider));
}
/** Parse a script in a particular context. */
std::unique_ptr<DescriptorImpl> ParseScript(uint32_t key_exp_index, Span<const char>& sp, ParseScriptContext ctx, FlatSigningProvider& out, std::string& error)
{
using namespace spanparsing;
auto expr = Expr(sp);
bool sorted_multi = false;
if (Func("pk", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ctx != ParseScriptContext::P2WSH, out, error);
if (!pubkey) return nullptr;
return std::make_unique<PKDescriptor>(std::move(pubkey));
}
if (Func("pkh", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, ctx != ParseScriptContext::P2WSH, out, error);
if (!pubkey) return nullptr;
return std::make_unique<PKHDescriptor>(std::move(pubkey));
}
if (ctx == ParseScriptContext::TOP && Func("combo", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, true, out, error);
if (!pubkey) return nullptr;
return std::make_unique<ComboDescriptor>(std::move(pubkey));
} else if (ctx != ParseScriptContext::TOP && Func("combo", expr)) {
error = "Cannot have combo in non-top level";
return nullptr;
}
if ((sorted_multi = Func("sortedmulti", expr)) || Func("multi", expr)) {
auto threshold = Expr(expr);
uint32_t thres;
std::vector<std::unique_ptr<PubkeyProvider>> providers;
if (!ParseUInt32(std::string(threshold.begin(), threshold.end()), &thres)) {
error = strprintf("Multi threshold '%s' is not valid", std::string(threshold.begin(), threshold.end()));
return nullptr;
}
size_t script_size = 0;
while (expr.size()) {
if (!Const(",", expr)) {
error = strprintf("Multi: expected ',', got '%c'", expr[0]);
return nullptr;
}
auto arg = Expr(expr);
auto pk = ParsePubkey(key_exp_index, arg, ctx != ParseScriptContext::P2WSH, out, error);
if (!pk) return nullptr;
script_size += pk->GetSize() + 1;
providers.emplace_back(std::move(pk));
key_exp_index++;
}
if (providers.empty() || providers.size() > 16) {
error = strprintf("Cannot have %u keys in multisig; must have between 1 and 16 keys, inclusive", providers.size());
return nullptr;
} else if (thres < 1) {
error = strprintf("Multisig threshold cannot be %d, must be at least 1", thres);
return nullptr;
} else if (thres > providers.size()) {
error = strprintf("Multisig threshold cannot be larger than the number of keys; threshold is %d but only %u keys specified", thres, providers.size());
return nullptr;
}
if (ctx == ParseScriptContext::TOP) {
if (providers.size() > 3) {
error = strprintf("Cannot have %u pubkeys in bare multisig; only at most 3 pubkeys", providers.size());
return nullptr;
}
}
if (ctx == ParseScriptContext::P2SH) {
if (script_size + 3 > MAX_SCRIPT_ELEMENT_SIZE) {
error = strprintf("P2SH script is too large, %d bytes is larger than %d bytes", script_size + 3, MAX_SCRIPT_ELEMENT_SIZE);
return nullptr;
}
}
return std::make_unique<MultisigDescriptor>(thres, std::move(providers), sorted_multi);
}
if (ctx != ParseScriptContext::P2WSH && Func("wpkh", expr)) {
auto pubkey = ParsePubkey(key_exp_index, expr, false, out, error);
if (!pubkey) return nullptr;
return std::make_unique<WPKHDescriptor>(std::move(pubkey));
} else if (ctx == ParseScriptContext::P2WSH && Func("wpkh", expr)) {
error = "Cannot have wpkh within wsh";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("sh", expr)) {
auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2SH, out, error);
if (!desc || expr.size()) return nullptr;
return std::make_unique<SHDescriptor>(std::move(desc));
} else if (ctx != ParseScriptContext::TOP && Func("sh", expr)) {
error = "Cannot have sh in non-top level";
return nullptr;
}
if (ctx != ParseScriptContext::P2WSH && Func("wsh", expr)) {
auto desc = ParseScript(key_exp_index, expr, ParseScriptContext::P2WSH, out, error);
if (!desc || expr.size()) return nullptr;
return std::make_unique<WSHDescriptor>(std::move(desc));
} else if (ctx == ParseScriptContext::P2WSH && Func("wsh", expr)) {
error = "Cannot have wsh within wsh";
return nullptr;
}
if (ctx == ParseScriptContext::TOP && Func("addr", expr)) {
CTxDestination dest = DecodeDestination(std::string(expr.begin(), expr.end()));
if (!IsValidDestination(dest)) {
error = "Address is not valid";
return nullptr;
}
return std::make_unique<AddressDescriptor>(std::move(dest));
}
if (ctx == ParseScriptContext::TOP && Func("raw", expr)) {
std::string str(expr.begin(), expr.end());
if (!IsHex(str)) {
error = "Raw script is not hex";
return nullptr;
}
auto bytes = ParseHex(str);
return std::make_unique<RawDescriptor>(CScript(bytes.begin(), bytes.end()));
}
if (ctx == ParseScriptContext::P2SH) {
error = "A function is needed within P2SH";
return nullptr;
} else if (ctx == ParseScriptContext::P2WSH) {
error = "A function is needed within P2WSH";
return nullptr;
}
error = strprintf("%s is not a valid descriptor function", std::string(expr.begin(), expr.end()));
return nullptr;
}
std::unique_ptr<PubkeyProvider> InferPubkey(const CPubKey& pubkey, ParseScriptContext, const SigningProvider& provider)
{
std::unique_ptr<PubkeyProvider> key_provider = std::make_unique<ConstPubkeyProvider>(0, pubkey);
KeyOriginInfo info;
if (provider.GetKeyOrigin(pubkey.GetID(), info)) {
return std::make_unique<OriginPubkeyProvider>(0, std::move(info), std::move(key_provider));
}
return key_provider;
}
std::unique_ptr<DescriptorImpl> InferScript(const CScript& script, ParseScriptContext ctx, const SigningProvider& provider)
{
std::vector<std::vector<unsigned char>> data;
TxoutType txntype = Solver(script, data);
if (txntype == TxoutType::PUBKEY) {
CPubKey pubkey(data[0].begin(), data[0].end());
if (pubkey.IsValid()) {
return std::make_unique<PKDescriptor>(InferPubkey(pubkey, ctx, provider));
}
}
if (txntype == TxoutType::PUBKEYHASH) {
uint160 hash(data[0]);
CKeyID keyid(hash);
CPubKey pubkey;
if (provider.GetPubKey(keyid, pubkey)) {
return std::make_unique<PKHDescriptor>(InferPubkey(pubkey, ctx, provider));
}
}
if (txntype == TxoutType::WITNESS_V0_KEYHASH && ctx != ParseScriptContext::P2WSH) {
uint160 hash(data[0]);
CKeyID keyid(hash);
CPubKey pubkey;
if (provider.GetPubKey(keyid, pubkey)) {
return std::make_unique<WPKHDescriptor>(InferPubkey(pubkey, ctx, provider));
}
}
if (txntype == TxoutType::MULTISIG) {
std::vector<std::unique_ptr<PubkeyProvider>> providers;
for (size_t i = 1; i + 1 < data.size(); ++i) {
CPubKey pubkey(data[i].begin(), data[i].end());
providers.push_back(InferPubkey(pubkey, ctx, provider));
}
return std::make_unique<MultisigDescriptor>((int)data[0][0], std::move(providers));
}
if (txntype == TxoutType::SCRIPTHASH && ctx == ParseScriptContext::TOP) {
uint160 hash(data[0]);
CScriptID scriptid(hash);
CScript subscript;
if (provider.GetCScript(scriptid, subscript)) {
auto sub = InferScript(subscript, ParseScriptContext::P2SH, provider);
if (sub) return std::make_unique<SHDescriptor>(std::move(sub));
}
}
if (txntype == TxoutType::WITNESS_V0_SCRIPTHASH && ctx != ParseScriptContext::P2WSH) {
CScriptID scriptid;
CRIPEMD160().Write(data[0].data(), data[0].size()).Finalize(scriptid.begin());
CScript subscript;
if (provider.GetCScript(scriptid, subscript)) {
auto sub = InferScript(subscript, ParseScriptContext::P2WSH, provider);
if (sub) return std::make_unique<WSHDescriptor>(std::move(sub));
}
}
CTxDestination dest;
if (ExtractDestination(script, dest)) {
if (GetScriptForDestination(dest) == script) {
return std::make_unique<AddressDescriptor>(std::move(dest));
}
}
return std::make_unique<RawDescriptor>(script);
}
} // namespace
/** Check a descriptor checksum, and update desc to be the checksum-less part. */
bool CheckChecksum(Span<const char>& sp, bool require_checksum, std::string& error, std::string* out_checksum = nullptr)
{
using namespace spanparsing;
auto check_split = Split(sp, '#');
if (check_split.size() > 2) {
error = "Multiple '#' symbols";
return false;
}
if (check_split.size() == 1 && require_checksum){
error = "Missing checksum";
return false;
}
if (check_split.size() == 2) {
if (check_split[1].size() != 8) {
error = strprintf("Expected 8 character checksum, not %u characters", check_split[1].size());
return false;
}
}
auto checksum = DescriptorChecksum(check_split[0]);
if (checksum.empty()) {
error = "Invalid characters in payload";
return false;
}
if (check_split.size() == 2) {
if (!std::equal(checksum.begin(), checksum.end(), check_split[1].begin())) {
error = strprintf("Provided checksum '%s' does not match computed checksum '%s'", std::string(check_split[1].begin(), check_split[1].end()), checksum);
return false;
}
}
if (out_checksum) *out_checksum = std::move(checksum);
sp = check_split[0];
return true;
}
std::unique_ptr<Descriptor> Parse(const std::string& descriptor, FlatSigningProvider& out, std::string& error, bool require_checksum)
{
Span<const char> sp{descriptor};
if (!CheckChecksum(sp, require_checksum, error)) return nullptr;
auto ret = ParseScript(0, sp, ParseScriptContext::TOP, out, error);
if (sp.size() == 0 && ret) return std::unique_ptr<Descriptor>(std::move(ret));
return nullptr;
}
std::string GetDescriptorChecksum(const std::string& descriptor)
{
std::string ret;
std::string error;
Span<const char> sp{descriptor};
if (!CheckChecksum(sp, false, error, &ret)) return "";
return ret;
}
std::unique_ptr<Descriptor> InferDescriptor(const CScript& script, const SigningProvider& provider)
{
return InferScript(script, ParseScriptContext::TOP, provider);
}
void DescriptorCache::CacheParentExtPubKey(uint32_t key_exp_pos, const CExtPubKey& xpub)
{
m_parent_xpubs[key_exp_pos] = xpub;
}
void DescriptorCache::CacheDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, const CExtPubKey& xpub)
{
auto& xpubs = m_derived_xpubs[key_exp_pos];
xpubs[der_index] = xpub;
}
bool DescriptorCache::GetCachedParentExtPubKey(uint32_t key_exp_pos, CExtPubKey& xpub) const
{
const auto& it = m_parent_xpubs.find(key_exp_pos);
if (it == m_parent_xpubs.end()) return false;
xpub = it->second;
return true;
}
bool DescriptorCache::GetCachedDerivedExtPubKey(uint32_t key_exp_pos, uint32_t der_index, CExtPubKey& xpub) const
{
const auto& key_exp_it = m_derived_xpubs.find(key_exp_pos);
if (key_exp_it == m_derived_xpubs.end()) return false;
const auto& der_it = key_exp_it->second.find(der_index);
if (der_it == key_exp_it->second.end()) return false;
xpub = der_it->second;
return true;
}
const ExtPubKeyMap DescriptorCache::GetCachedParentExtPubKeys() const
{
return m_parent_xpubs;
}
const std::unordered_map<uint32_t, ExtPubKeyMap> DescriptorCache::GetCachedDerivedExtPubKeys() const
{
return m_derived_xpubs;
}
|