1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
|
// Copyright (c) 2015-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <scheduler.h>
#include <random.h>
#include <util/syscall_sandbox.h>
#include <util/time.h>
#include <assert.h>
#include <functional>
#include <utility>
CScheduler::CScheduler()
{
}
CScheduler::~CScheduler()
{
assert(nThreadsServicingQueue == 0);
if (stopWhenEmpty) assert(taskQueue.empty());
}
void CScheduler::serviceQueue()
{
SetSyscallSandboxPolicy(SyscallSandboxPolicy::SCHEDULER);
WAIT_LOCK(newTaskMutex, lock);
++nThreadsServicingQueue;
// newTaskMutex is locked throughout this loop EXCEPT
// when the thread is waiting or when the user's function
// is called.
while (!shouldStop()) {
try {
while (!shouldStop() && taskQueue.empty()) {
// Wait until there is something to do.
newTaskScheduled.wait(lock);
}
// Wait until either there is a new task, or until
// the time of the first item on the queue:
while (!shouldStop() && !taskQueue.empty()) {
std::chrono::system_clock::time_point timeToWaitFor = taskQueue.begin()->first;
if (newTaskScheduled.wait_until(lock, timeToWaitFor) == std::cv_status::timeout) {
break; // Exit loop after timeout, it means we reached the time of the event
}
}
// If there are multiple threads, the queue can empty while we're waiting (another
// thread may service the task we were waiting on).
if (shouldStop() || taskQueue.empty())
continue;
Function f = taskQueue.begin()->second;
taskQueue.erase(taskQueue.begin());
{
// Unlock before calling f, so it can reschedule itself or another task
// without deadlocking:
REVERSE_LOCK(lock);
f();
}
} catch (...) {
--nThreadsServicingQueue;
throw;
}
}
--nThreadsServicingQueue;
newTaskScheduled.notify_one();
}
void CScheduler::schedule(CScheduler::Function f, std::chrono::system_clock::time_point t)
{
{
LOCK(newTaskMutex);
taskQueue.insert(std::make_pair(t, f));
}
newTaskScheduled.notify_one();
}
void CScheduler::MockForward(std::chrono::seconds delta_seconds)
{
assert(delta_seconds > 0s && delta_seconds <= 1h);
{
LOCK(newTaskMutex);
// use temp_queue to maintain updated schedule
std::multimap<std::chrono::system_clock::time_point, Function> temp_queue;
for (const auto& element : taskQueue) {
temp_queue.emplace_hint(temp_queue.cend(), element.first - delta_seconds, element.second);
}
// point taskQueue to temp_queue
taskQueue = std::move(temp_queue);
}
// notify that the taskQueue needs to be processed
newTaskScheduled.notify_one();
}
static void Repeat(CScheduler& s, CScheduler::Function f, std::chrono::milliseconds delta)
{
f();
s.scheduleFromNow([=, &s] { Repeat(s, f, delta); }, delta);
}
void CScheduler::scheduleEvery(CScheduler::Function f, std::chrono::milliseconds delta)
{
scheduleFromNow([=] { Repeat(*this, f, delta); }, delta);
}
size_t CScheduler::getQueueInfo(std::chrono::system_clock::time_point& first,
std::chrono::system_clock::time_point& last) const
{
LOCK(newTaskMutex);
size_t result = taskQueue.size();
if (!taskQueue.empty()) {
first = taskQueue.begin()->first;
last = taskQueue.rbegin()->first;
}
return result;
}
bool CScheduler::AreThreadsServicingQueue() const
{
LOCK(newTaskMutex);
return nThreadsServicingQueue;
}
void SingleThreadedSchedulerClient::MaybeScheduleProcessQueue()
{
{
LOCK(m_callbacks_mutex);
// Try to avoid scheduling too many copies here, but if we
// accidentally have two ProcessQueue's scheduled at once its
// not a big deal.
if (m_are_callbacks_running) return;
if (m_callbacks_pending.empty()) return;
}
m_pscheduler->schedule(std::bind(&SingleThreadedSchedulerClient::ProcessQueue, this), std::chrono::system_clock::now());
}
void SingleThreadedSchedulerClient::ProcessQueue()
{
std::function<void()> callback;
{
LOCK(m_callbacks_mutex);
if (m_are_callbacks_running) return;
if (m_callbacks_pending.empty()) return;
m_are_callbacks_running = true;
callback = std::move(m_callbacks_pending.front());
m_callbacks_pending.pop_front();
}
// RAII the setting of fCallbacksRunning and calling MaybeScheduleProcessQueue
// to ensure both happen safely even if callback() throws.
struct RAIICallbacksRunning {
SingleThreadedSchedulerClient* instance;
explicit RAIICallbacksRunning(SingleThreadedSchedulerClient* _instance) : instance(_instance) {}
~RAIICallbacksRunning()
{
{
LOCK(instance->m_callbacks_mutex);
instance->m_are_callbacks_running = false;
}
instance->MaybeScheduleProcessQueue();
}
} raiicallbacksrunning(this);
callback();
}
void SingleThreadedSchedulerClient::AddToProcessQueue(std::function<void()> func)
{
assert(m_pscheduler);
{
LOCK(m_callbacks_mutex);
m_callbacks_pending.emplace_back(std::move(func));
}
MaybeScheduleProcessQueue();
}
void SingleThreadedSchedulerClient::EmptyQueue()
{
assert(!m_pscheduler->AreThreadsServicingQueue());
bool should_continue = true;
while (should_continue) {
ProcessQueue();
LOCK(m_callbacks_mutex);
should_continue = !m_callbacks_pending.empty();
}
}
size_t SingleThreadedSchedulerClient::CallbacksPending()
{
LOCK(m_callbacks_mutex);
return m_callbacks_pending.size();
}
|