aboutsummaryrefslogtreecommitdiff
path: root/src/scalar_impl.h
blob: 70cd73db062af26508453fda50ee5a77789f4c66 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
/**********************************************************************
 * Copyright (c) 2014 Pieter Wuille                                   *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef SECP256K1_SCALAR_IMPL_H
#define SECP256K1_SCALAR_IMPL_H

#include "scalar.h"
#include "util.h"

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#if defined(EXHAUSTIVE_TEST_ORDER)
#include "scalar_low_impl.h"
#elif defined(USE_SCALAR_4X64)
#include "scalar_4x64_impl.h"
#elif defined(USE_SCALAR_8X32)
#include "scalar_8x32_impl.h"
#else
#error "Please select scalar implementation"
#endif

static const secp256k1_scalar secp256k1_scalar_one = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 1);
static const secp256k1_scalar secp256k1_scalar_zero = SECP256K1_SCALAR_CONST(0, 0, 0, 0, 0, 0, 0, 0);

#ifndef USE_NUM_NONE
static void secp256k1_scalar_get_num(secp256k1_num *r, const secp256k1_scalar *a) {
    unsigned char c[32];
    secp256k1_scalar_get_b32(c, a);
    secp256k1_num_set_bin(r, c, 32);
}

/** secp256k1 curve order, see secp256k1_ecdsa_const_order_as_fe in ecdsa_impl.h */
static void secp256k1_scalar_order_get_num(secp256k1_num *r) {
#if defined(EXHAUSTIVE_TEST_ORDER)
    static const unsigned char order[32] = {
        0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,0,
        0,0,0,0,0,0,0,EXHAUSTIVE_TEST_ORDER
    };
#else
    static const unsigned char order[32] = {
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
        0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
        0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x41
    };
#endif
    secp256k1_num_set_bin(r, order, 32);
}
#endif

static int secp256k1_scalar_set_b32_seckey(secp256k1_scalar *r, const unsigned char *bin) {
    int overflow;
    secp256k1_scalar_set_b32(r, bin, &overflow);
    return (!overflow) & (!secp256k1_scalar_is_zero(r));
}

static void secp256k1_scalar_inverse(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(EXHAUSTIVE_TEST_ORDER)
    int i;
    *r = 0;
    for (i = 0; i < EXHAUSTIVE_TEST_ORDER; i++)
        if ((i * *x) % EXHAUSTIVE_TEST_ORDER == 1)
            *r = i;
    /* If this VERIFY_CHECK triggers we were given a noninvertible scalar (and thus
     * have a composite group order; fix it in exhaustive_tests.c). */
    VERIFY_CHECK(*r != 0);
}
#else
    secp256k1_scalar *t;
    int i;
    /* First compute xN as x ^ (2^N - 1) for some values of N,
     * and uM as x ^ M for some values of M. */
    secp256k1_scalar x2, x3, x6, x8, x14, x28, x56, x112, x126;
    secp256k1_scalar u2, u5, u9, u11, u13;

    secp256k1_scalar_sqr(&u2, x);
    secp256k1_scalar_mul(&x2, &u2,  x);
    secp256k1_scalar_mul(&u5, &u2, &x2);
    secp256k1_scalar_mul(&x3, &u5,  &u2);
    secp256k1_scalar_mul(&u9, &x3, &u2);
    secp256k1_scalar_mul(&u11, &u9, &u2);
    secp256k1_scalar_mul(&u13, &u11, &u2);

    secp256k1_scalar_sqr(&x6, &u13);
    secp256k1_scalar_sqr(&x6, &x6);
    secp256k1_scalar_mul(&x6, &x6, &u11);

    secp256k1_scalar_sqr(&x8, &x6);
    secp256k1_scalar_sqr(&x8, &x8);
    secp256k1_scalar_mul(&x8, &x8,  &x2);

    secp256k1_scalar_sqr(&x14, &x8);
    for (i = 0; i < 5; i++) {
        secp256k1_scalar_sqr(&x14, &x14);
    }
    secp256k1_scalar_mul(&x14, &x14, &x6);

    secp256k1_scalar_sqr(&x28, &x14);
    for (i = 0; i < 13; i++) {
        secp256k1_scalar_sqr(&x28, &x28);
    }
    secp256k1_scalar_mul(&x28, &x28, &x14);

    secp256k1_scalar_sqr(&x56, &x28);
    for (i = 0; i < 27; i++) {
        secp256k1_scalar_sqr(&x56, &x56);
    }
    secp256k1_scalar_mul(&x56, &x56, &x28);

    secp256k1_scalar_sqr(&x112, &x56);
    for (i = 0; i < 55; i++) {
        secp256k1_scalar_sqr(&x112, &x112);
    }
    secp256k1_scalar_mul(&x112, &x112, &x56);

    secp256k1_scalar_sqr(&x126, &x112);
    for (i = 0; i < 13; i++) {
        secp256k1_scalar_sqr(&x126, &x126);
    }
    secp256k1_scalar_mul(&x126, &x126, &x14);

    /* Then accumulate the final result (t starts at x126). */
    t = &x126;
    for (i = 0; i < 3; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u5); /* 101 */
    for (i = 0; i < 4; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 4; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u5); /* 101 */
    for (i = 0; i < 5; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u11); /* 1011 */
    for (i = 0; i < 4; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u11); /* 1011 */
    for (i = 0; i < 4; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 5; i++) { /* 00 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 6; i++) { /* 00 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u13); /* 1101 */
    for (i = 0; i < 4; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u5); /* 101 */
    for (i = 0; i < 3; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 5; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u9); /* 1001 */
    for (i = 0; i < 6; i++) { /* 000 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u5); /* 101 */
    for (i = 0; i < 10; i++) { /* 0000000 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 4; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x3); /* 111 */
    for (i = 0; i < 9; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x8); /* 11111111 */
    for (i = 0; i < 5; i++) { /* 0 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u9); /* 1001 */
    for (i = 0; i < 6; i++) { /* 00 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u11); /* 1011 */
    for (i = 0; i < 4; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u13); /* 1101 */
    for (i = 0; i < 5; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &x2); /* 11 */
    for (i = 0; i < 6; i++) { /* 00 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u13); /* 1101 */
    for (i = 0; i < 10; i++) { /* 000000 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u13); /* 1101 */
    for (i = 0; i < 4; i++) {
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, &u9); /* 1001 */
    for (i = 0; i < 6; i++) { /* 00000 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(t, t, x); /* 1 */
    for (i = 0; i < 8; i++) { /* 00 */
        secp256k1_scalar_sqr(t, t);
    }
    secp256k1_scalar_mul(r, t, &x6); /* 111111 */
}

SECP256K1_INLINE static int secp256k1_scalar_is_even(const secp256k1_scalar *a) {
    return !(a->d[0] & 1);
}
#endif

static void secp256k1_scalar_inverse_var(secp256k1_scalar *r, const secp256k1_scalar *x) {
#if defined(USE_SCALAR_INV_BUILTIN)
    secp256k1_scalar_inverse(r, x);
#elif defined(USE_SCALAR_INV_NUM)
    unsigned char b[32];
    secp256k1_num n, m;
    secp256k1_scalar t = *x;
    secp256k1_scalar_get_b32(b, &t);
    secp256k1_num_set_bin(&n, b, 32);
    secp256k1_scalar_order_get_num(&m);
    secp256k1_num_mod_inverse(&n, &n, &m);
    secp256k1_num_get_bin(b, 32, &n);
    secp256k1_scalar_set_b32(r, b, NULL);
    /* Verify that the inverse was computed correctly, without GMP code. */
    secp256k1_scalar_mul(&t, &t, r);
    CHECK(secp256k1_scalar_is_one(&t));
#else
#error "Please select scalar inverse implementation"
#endif
}

#ifdef USE_ENDOMORPHISM
#if defined(EXHAUSTIVE_TEST_ORDER)
/**
 * Find k1 and k2 given k, such that k1 + k2 * lambda == k mod n; unlike in the
 * full case we don't bother making k1 and k2 be small, we just want them to be
 * nontrivial to get full test coverage for the exhaustive tests. We therefore
 * (arbitrarily) set k2 = k + 5 and k1 = k - k2 * lambda.
 */
static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
    *r2 = (*a + 5) % EXHAUSTIVE_TEST_ORDER;
    *r1 = (*a + (EXHAUSTIVE_TEST_ORDER - *r2) * EXHAUSTIVE_TEST_LAMBDA) % EXHAUSTIVE_TEST_ORDER;
}
#else
/**
 * The Secp256k1 curve has an endomorphism, where lambda * (x, y) = (beta * x, y), where
 * lambda is {0x53,0x63,0xad,0x4c,0xc0,0x5c,0x30,0xe0,0xa5,0x26,0x1c,0x02,0x88,0x12,0x64,0x5a,
 *            0x12,0x2e,0x22,0xea,0x20,0x81,0x66,0x78,0xdf,0x02,0x96,0x7c,0x1b,0x23,0xbd,0x72}
 *
 * "Guide to Elliptic Curve Cryptography" (Hankerson, Menezes, Vanstone) gives an algorithm
 * (algorithm 3.74) to find k1 and k2 given k, such that k1 + k2 * lambda == k mod n, and k1
 * and k2 have a small size.
 * It relies on constants a1, b1, a2, b2. These constants for the value of lambda above are:
 *
 * - a1 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
 * - b1 =     -{0xe4,0x43,0x7e,0xd6,0x01,0x0e,0x88,0x28,0x6f,0x54,0x7f,0xa9,0x0a,0xbf,0xe4,0xc3}
 * - a2 = {0x01,0x14,0xca,0x50,0xf7,0xa8,0xe2,0xf3,0xf6,0x57,0xc1,0x10,0x8d,0x9d,0x44,0xcf,0xd8}
 * - b2 =      {0x30,0x86,0xd2,0x21,0xa7,0xd4,0x6b,0xcd,0xe8,0x6c,0x90,0xe4,0x92,0x84,0xeb,0x15}
 *
 * The algorithm then computes c1 = round(b1 * k / n) and c2 = round(b2 * k / n), and gives
 * k1 = k - (c1*a1 + c2*a2) and k2 = -(c1*b1 + c2*b2). Instead, we use modular arithmetic, and
 * compute k1 as k - k2 * lambda, avoiding the need for constants a1 and a2.
 *
 * g1, g2 are precomputed constants used to replace division with a rounded multiplication
 * when decomposing the scalar for an endomorphism-based point multiplication.
 *
 * The possibility of using precomputed estimates is mentioned in "Guide to Elliptic Curve
 * Cryptography" (Hankerson, Menezes, Vanstone) in section 3.5.
 *
 * The derivation is described in the paper "Efficient Software Implementation of Public-Key
 * Cryptography on Sensor Networks Using the MSP430X Microcontroller" (Gouvea, Oliveira, Lopez),
 * Section 4.3 (here we use a somewhat higher-precision estimate):
 * d = a1*b2 - b1*a2
 * g1 = round((2^272)*b2/d)
 * g2 = round((2^272)*b1/d)
 *
 * (Note that 'd' is also equal to the curve order here because [a1,b1] and [a2,b2] are found
 * as outputs of the Extended Euclidean Algorithm on inputs 'order' and 'lambda').
 *
 * The function below splits a in r1 and r2, such that r1 + lambda * r2 == a (mod order).
 */

static void secp256k1_scalar_split_lambda(secp256k1_scalar *r1, secp256k1_scalar *r2, const secp256k1_scalar *a) {
    secp256k1_scalar c1, c2;
    static const secp256k1_scalar minus_lambda = SECP256K1_SCALAR_CONST(
        0xAC9C52B3UL, 0x3FA3CF1FUL, 0x5AD9E3FDUL, 0x77ED9BA4UL,
        0xA880B9FCUL, 0x8EC739C2UL, 0xE0CFC810UL, 0xB51283CFUL
    );
    static const secp256k1_scalar minus_b1 = SECP256K1_SCALAR_CONST(
        0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00000000UL,
        0xE4437ED6UL, 0x010E8828UL, 0x6F547FA9UL, 0x0ABFE4C3UL
    );
    static const secp256k1_scalar minus_b2 = SECP256K1_SCALAR_CONST(
        0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL,
        0x8A280AC5UL, 0x0774346DUL, 0xD765CDA8UL, 0x3DB1562CUL
    );
    static const secp256k1_scalar g1 = SECP256K1_SCALAR_CONST(
        0x00000000UL, 0x00000000UL, 0x00000000UL, 0x00003086UL,
        0xD221A7D4UL, 0x6BCDE86CUL, 0x90E49284UL, 0xEB153DABUL
    );
    static const secp256k1_scalar g2 = SECP256K1_SCALAR_CONST(
        0x00000000UL, 0x00000000UL, 0x00000000UL, 0x0000E443UL,
        0x7ED6010EUL, 0x88286F54UL, 0x7FA90ABFUL, 0xE4C42212UL
    );
    VERIFY_CHECK(r1 != a);
    VERIFY_CHECK(r2 != a);
    /* these _var calls are constant time since the shift amount is constant */
    secp256k1_scalar_mul_shift_var(&c1, a, &g1, 272);
    secp256k1_scalar_mul_shift_var(&c2, a, &g2, 272);
    secp256k1_scalar_mul(&c1, &c1, &minus_b1);
    secp256k1_scalar_mul(&c2, &c2, &minus_b2);
    secp256k1_scalar_add(r2, &c1, &c2);
    secp256k1_scalar_mul(r1, r2, &minus_lambda);
    secp256k1_scalar_add(r1, r1, a);
}
#endif
#endif

#endif /* SECP256K1_SCALAR_IMPL_H */