aboutsummaryrefslogtreecommitdiff
path: root/src/scalar_4x64_impl.h
blob: f78718234fe16e154f4fec63e28371278305ae73 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_SCALAR_REPR_IMPL_H_
#define _SECP256K1_SCALAR_REPR_IMPL_H_

typedef unsigned __int128 uint128_t;

/* Limbs of the secp256k1 order. */
#define SECP256K1_N_0 ((uint64_t)0xBFD25E8CD0364141ULL)
#define SECP256K1_N_1 ((uint64_t)0xBAAEDCE6AF48A03BULL)
#define SECP256K1_N_2 ((uint64_t)0xFFFFFFFFFFFFFFFEULL)
#define SECP256K1_N_3 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)

/* Limbs of 2^256 minus the secp256k1 order. */
#define SECP256K1_N_C_0 (~SECP256K1_N_0 + 1)
#define SECP256K1_N_C_1 (~SECP256K1_N_1)
#define SECP256K1_N_C_2 (1)

/* Limbs of half the secp256k1 order. */
#define SECP256K1_N_H_0 ((uint64_t)0xDFE92F46681B20A0ULL)
#define SECP256K1_N_H_1 ((uint64_t)0x5D576E7357A4501DULL)
#define SECP256K1_N_H_2 ((uint64_t)0xFFFFFFFFFFFFFFFFULL)
#define SECP256K1_N_H_3 ((uint64_t)0x7FFFFFFFFFFFFFFFULL)

SECP256K1_INLINE static void secp256k1_scalar_clear(secp256k1_scalar_t *r) {
    r->d[0] = 0;
    r->d[1] = 0;
    r->d[2] = 0;
    r->d[3] = 0;
}

SECP256K1_INLINE static int secp256k1_scalar_get_bits(const secp256k1_scalar_t *a, int offset, int count) {
    VERIFY_CHECK((offset + count - 1) / 64 == offset / 64);
    return (a->d[offset / 64] >> (offset % 64)) & ((((uint64_t)1) << count) - 1);
}

SECP256K1_INLINE static int secp256k1_scalar_check_overflow(const secp256k1_scalar_t *a) {
    int yes = 0;
    int no = 0;
    no |= (a->d[3] < SECP256K1_N_3); /* No need for a > check. */
    no |= (a->d[2] < SECP256K1_N_2);
    yes |= (a->d[2] > SECP256K1_N_2) & ~no;
    no |= (a->d[1] < SECP256K1_N_1);
    yes |= (a->d[1] > SECP256K1_N_1) & ~no;
    yes |= (a->d[0] >= SECP256K1_N_0) & ~no;
    return yes;
}

SECP256K1_INLINE static int secp256k1_scalar_reduce(secp256k1_scalar_t *r, unsigned int overflow) {
    VERIFY_CHECK(overflow <= 1);
    uint128_t t = (uint128_t)r->d[0] + overflow * SECP256K1_N_C_0;
    r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint128_t)r->d[1] + overflow * SECP256K1_N_C_1;
    r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint128_t)r->d[2] + overflow * SECP256K1_N_C_2;
    r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint64_t)r->d[3];
    r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL;
    return overflow;
}

static void secp256k1_scalar_add(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
    uint128_t t = (uint128_t)a->d[0] + b->d[0];
    r->d[0] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint128_t)a->d[1] + b->d[1];
    r->d[1] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint128_t)a->d[2] + b->d[2];
    r->d[2] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    t += (uint128_t)a->d[3] + b->d[3];
    r->d[3] = t & 0xFFFFFFFFFFFFFFFFULL; t >>= 64;
    secp256k1_scalar_reduce(r, t + secp256k1_scalar_check_overflow(r));
}

static void secp256k1_scalar_set_b32(secp256k1_scalar_t *r, const unsigned char *b32, int *overflow) {
    r->d[0] = (uint64_t)b32[31] | (uint64_t)b32[30] << 8 | (uint64_t)b32[29] << 16 | (uint64_t)b32[28] << 24 | (uint64_t)b32[27] << 32 | (uint64_t)b32[26] << 40 | (uint64_t)b32[25] << 48 | (uint64_t)b32[24] << 56;
    r->d[1] = (uint64_t)b32[23] | (uint64_t)b32[22] << 8 | (uint64_t)b32[21] << 16 | (uint64_t)b32[20] << 24 | (uint64_t)b32[19] << 32 | (uint64_t)b32[18] << 40 | (uint64_t)b32[17] << 48 | (uint64_t)b32[16] << 56;
    r->d[2] = (uint64_t)b32[15] | (uint64_t)b32[14] << 8 | (uint64_t)b32[13] << 16 | (uint64_t)b32[12] << 24 | (uint64_t)b32[11] << 32 | (uint64_t)b32[10] << 40 | (uint64_t)b32[9] << 48 | (uint64_t)b32[8] << 56;
    r->d[3] = (uint64_t)b32[7] | (uint64_t)b32[6] << 8 | (uint64_t)b32[5] << 16 | (uint64_t)b32[4] << 24 | (uint64_t)b32[3] << 32 | (uint64_t)b32[2] << 40 | (uint64_t)b32[1] << 48 | (uint64_t)b32[0] << 56;
    int over = secp256k1_scalar_reduce(r, secp256k1_scalar_check_overflow(r));
    if (overflow) {
        *overflow = over;
    }
}

static void secp256k1_scalar_get_b32(unsigned char *bin, const secp256k1_scalar_t* a) {
    bin[0] = a->d[3] >> 56; bin[1] = a->d[3] >> 48; bin[2] = a->d[3] >> 40; bin[3] = a->d[3] >> 32; bin[4] = a->d[3] >> 24; bin[5] = a->d[3] >> 16; bin[6] = a->d[3] >> 8; bin[7] = a->d[3];
    bin[8] = a->d[2] >> 56; bin[9] = a->d[2] >> 48; bin[10] = a->d[2] >> 40; bin[11] = a->d[2] >> 32; bin[12] = a->d[2] >> 24; bin[13] = a->d[2] >> 16; bin[14] = a->d[2] >> 8; bin[15] = a->d[2];
    bin[16] = a->d[1] >> 56; bin[17] = a->d[1] >> 48; bin[18] = a->d[1] >> 40; bin[19] = a->d[1] >> 32; bin[20] = a->d[1] >> 24; bin[21] = a->d[1] >> 16; bin[22] = a->d[1] >> 8; bin[23] = a->d[1];
    bin[24] = a->d[0] >> 56; bin[25] = a->d[0] >> 48; bin[26] = a->d[0] >> 40; bin[27] = a->d[0] >> 32; bin[28] = a->d[0] >> 24; bin[29] = a->d[0] >> 16; bin[30] = a->d[0] >> 8; bin[31] = a->d[0];
}

SECP256K1_INLINE static int secp256k1_scalar_is_zero(const secp256k1_scalar_t *a) {
    return (a->d[0] | a->d[1] | a->d[2] | a->d[3]) == 0;
}

static void secp256k1_scalar_negate(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
    uint64_t nonzero = 0xFFFFFFFFFFFFFFFFULL * (secp256k1_scalar_is_zero(a) == 0);
    uint128_t t = (uint128_t)(~a->d[0]) + SECP256K1_N_0 + 1;
    r->d[0] = t & nonzero; t >>= 64;
    t += (uint128_t)(~a->d[1]) + SECP256K1_N_1;
    r->d[1] = t & nonzero; t >>= 64;
    t += (uint128_t)(~a->d[2]) + SECP256K1_N_2;
    r->d[2] = t & nonzero; t >>= 64;
    t += (uint128_t)(~a->d[3]) + SECP256K1_N_3;
    r->d[3] = t & nonzero;
}

SECP256K1_INLINE static int secp256k1_scalar_is_one(const secp256k1_scalar_t *a) {
    return ((a->d[0] ^ 1) | a->d[1] | a->d[2] | a->d[3]) == 0;
}

static int secp256k1_scalar_is_high(const secp256k1_scalar_t *a) {
    int yes = 0;
    int no = 0;
    no |= (a->d[3] < SECP256K1_N_H_3);
    yes |= (a->d[3] > SECP256K1_N_H_3) & ~no;
    no |= (a->d[2] < SECP256K1_N_H_2) & ~yes; /* No need for a > check. */
    no |= (a->d[1] < SECP256K1_N_H_1) & ~yes;
    yes |= (a->d[1] > SECP256K1_N_H_1) & ~no;
    yes |= (a->d[0] > SECP256K1_N_H_0) & ~no;
    return yes;
}

/* Inspired by the macros in OpenSSL's crypto/bn/asm/x86_64-gcc.c. */

/** Add a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd(a,b) { \
    uint64_t tl, th; \
    { \
        uint128_t t = (uint128_t)a * b; \
        th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
        tl = t; \
    } \
    c0 += tl;                 /* overflow is handled on the next line */ \
    th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFFFFFFFFFF */ \
    c1 += th;                 /* overflow is handled on the next line */ \
    c2 += (c1 < th) ? 1 : 0;  /* never overflows by contract (verified in the next line) */ \
    VERIFY_CHECK((c1 >= th) || (c2 != 0)); \
}

/** Add a*b to the number defined by (c0,c1). c1 must never overflow. */
#define muladd_fast(a,b) { \
    uint64_t tl, th; \
    { \
        uint128_t t = (uint128_t)a * b; \
        th = t >> 64;         /* at most 0xFFFFFFFFFFFFFFFE */ \
        tl = t; \
    } \
    c0 += tl;                 /* overflow is handled on the next line */ \
    th += (c0 < tl) ? 1 : 0;  /* at most 0xFFFFFFFFFFFFFFFF */ \
    c1 += th;                 /* never overflows by contract (verified in the next line) */ \
    VERIFY_CHECK(c1 >= th); \
}

/** Add 2*a*b to the number defined by (c0,c1,c2). c2 must never overflow. */
#define muladd2(a,b) { \
    uint64_t tl, th; \
    { \
        uint128_t t = (uint128_t)a * b; \
        th = t >> 64;               /* at most 0xFFFFFFFFFFFFFFFE */ \
        tl = t; \
    } \
    uint64_t th2 = th + th;         /* at most 0xFFFFFFFFFFFFFFFE (in case th was 0x7FFFFFFFFFFFFFFF) */ \
    c2 += (th2 < th) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((th2 >= th) || (c2 != 0)); \
    uint64_t tl2 = tl + tl;         /* at most 0xFFFFFFFFFFFFFFFE (in case the lowest 63 bits of tl were 0x7FFFFFFFFFFFFFFF) */ \
    th2 += (tl2 < tl) ? 1 : 0;      /* at most 0xFFFFFFFFFFFFFFFF */ \
    c0 += tl2;                      /* overflow is handled on the next line */ \
    th2 += (c0 < tl2) ? 1 : 0;      /* second overflow is handled on the next line */ \
    c2 += (c0 < tl2) & (th2 == 0);  /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c0 >= tl2) || (th2 != 0) || (c2 != 0)); \
    c1 += th2;                      /* overflow is handled on the next line */ \
    c2 += (c1 < th2) ? 1 : 0;       /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c1 >= th2) || (c2 != 0)); \
}

/** Add a to the number defined by (c0,c1,c2). c2 must never overflow. */
#define sumadd(a) { \
    c0 += (a);                  /* overflow is handled on the next line */ \
    unsigned int over = (c0 < (a)) ? 1 : 0; \
    c1 += over;                 /* overflow is handled on the next line */ \
    c2 += (c1 < over) ? 1 : 0;  /* never overflows by contract */ \
}

/** Add a to the number defined by (c0,c1). c1 must never overflow, c2 must be zero. */
#define sumadd_fast(a) { \
    c0 += (a);                 /* overflow is handled on the next line */ \
    c1 += (c0 < (a)) ? 1 : 0;  /* never overflows by contract (verified the next line) */ \
    VERIFY_CHECK((c1 != 0) | (c0 >= (a))); \
    VERIFY_CHECK(c2 == 0); \
}

/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. */
#define extract(n) { \
    (n) = c0; \
    c0 = c1; \
    c1 = c2; \
    c2 = 0; \
}

/** Extract the lowest 64 bits of (c0,c1,c2) into n, and left shift the number 64 bits. c2 is required to be zero. */
#define extract_fast(n) { \
    (n) = c0; \
    c0 = c1; \
    c1 = 0; \
    VERIFY_CHECK(c2 == 0); \
}

static void secp256k1_scalar_reduce_512(secp256k1_scalar_t *r, const uint64_t *l) {
    uint64_t n0 = l[4], n1 = l[5], n2 = l[6], n3 = l[7];

    /* 160 bit accumulator. */
    uint64_t c0, c1;
    uint32_t c2;

    /* Reduce 512 bits into 385. */
    /* m[0..6] = l[0..3] + n[0..3] * SECP256K1_N_C. */
    c0 = l[0]; c1 = 0; c2 = 0;
    muladd_fast(n0, SECP256K1_N_C_0);
    uint64_t m0; extract_fast(m0);
    sumadd_fast(l[1]);
    muladd(n1, SECP256K1_N_C_0);
    muladd(n0, SECP256K1_N_C_1);
    uint64_t m1; extract(m1);
    sumadd(l[2]);
    muladd(n2, SECP256K1_N_C_0);
    muladd(n1, SECP256K1_N_C_1);
    sumadd(n0);
    uint64_t m2; extract(m2);
    sumadd(l[3]);
    muladd(n3, SECP256K1_N_C_0);
    muladd(n2, SECP256K1_N_C_1);
    sumadd(n1);
    uint64_t m3; extract(m3);
    muladd(n3, SECP256K1_N_C_1);
    sumadd(n2);
    uint64_t m4; extract(m4);
    sumadd_fast(n3);
    uint64_t m5; extract_fast(m5);
    VERIFY_CHECK(c0 <= 1);
    uint32_t m6 = c0;

    /* Reduce 385 bits into 258. */
    /* p[0..4] = m[0..3] + m[4..6] * SECP256K1_N_C. */
    c0 = m0; c1 = 0; c2 = 0;
    muladd_fast(m4, SECP256K1_N_C_0);
    uint64_t p0; extract_fast(p0);
    sumadd_fast(m1);
    muladd(m5, SECP256K1_N_C_0);
    muladd(m4, SECP256K1_N_C_1);
    uint64_t p1; extract(p1);
    sumadd(m2);
    muladd(m6, SECP256K1_N_C_0);
    muladd(m5, SECP256K1_N_C_1);
    sumadd(m4);
    uint64_t p2; extract(p2);
    sumadd_fast(m3);
    muladd_fast(m6, SECP256K1_N_C_1);
    sumadd_fast(m5);
    uint64_t p3; extract_fast(p3);
    uint32_t p4 = c0 + m6;
    VERIFY_CHECK(p4 <= 2);

    /* Reduce 258 bits into 256. */
    /* r[0..3] = p[0..3] + p[4] * SECP256K1_N_C. */
    uint128_t c = p0 + (uint128_t)SECP256K1_N_C_0 * p4;
    r->d[0] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
    c += p1 + (uint128_t)SECP256K1_N_C_1 * p4;
    r->d[1] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
    c += p2 + (uint128_t)p4;
    r->d[2] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;
    c += p3;
    r->d[3] = c & 0xFFFFFFFFFFFFFFFFULL; c >>= 64;

    /* Final reduction of r. */
    secp256k1_scalar_reduce(r, c + secp256k1_scalar_check_overflow(r));
}

static void secp256k1_scalar_mul(secp256k1_scalar_t *r, const secp256k1_scalar_t *a, const secp256k1_scalar_t *b) {
    /* 160 bit accumulator. */
    uint64_t c0 = 0, c1 = 0;
    uint32_t c2 = 0;

    uint64_t l[8];

    /* l[0..7] = a[0..3] * b[0..3]. */
    muladd_fast(a->d[0], b->d[0]);
    extract_fast(l[0]);
    muladd(a->d[0], b->d[1]);
    muladd(a->d[1], b->d[0]);
    extract(l[1]);
    muladd(a->d[0], b->d[2]);
    muladd(a->d[1], b->d[1]);
    muladd(a->d[2], b->d[0]);
    extract(l[2]);
    muladd(a->d[0], b->d[3]);
    muladd(a->d[1], b->d[2]);
    muladd(a->d[2], b->d[1]);
    muladd(a->d[3], b->d[0]);
    extract(l[3]);
    muladd(a->d[1], b->d[3]);
    muladd(a->d[2], b->d[2]);
    muladd(a->d[3], b->d[1]);
    extract(l[4]);
    muladd(a->d[2], b->d[3]);
    muladd(a->d[3], b->d[2]);
    extract(l[5]);
    muladd_fast(a->d[3], b->d[3]);
    extract_fast(l[6]);
    VERIFY_CHECK(c1 <= 0);
    l[7] = c0;

    secp256k1_scalar_reduce_512(r, l);
}

static void secp256k1_scalar_sqr(secp256k1_scalar_t *r, const secp256k1_scalar_t *a) {
    /* 160 bit accumulator. */
    uint64_t c0 = 0, c1 = 0;
    uint32_t c2 = 0;

    uint64_t l[8];

    /* l[0..7] = a[0..3] * b[0..3]. */
    muladd_fast(a->d[0], a->d[0]);
    extract_fast(l[0]);
    muladd2(a->d[0], a->d[1]);
    extract(l[1]);
    muladd2(a->d[0], a->d[2]);
    muladd(a->d[1], a->d[1]);
    extract(l[2]);
    muladd2(a->d[0], a->d[3]);
    muladd2(a->d[1], a->d[2]);
    extract(l[3]);
    muladd2(a->d[1], a->d[3]);
    muladd(a->d[2], a->d[2]);
    extract(l[4]);
    muladd2(a->d[2], a->d[3]);
    extract(l[5]);
    muladd_fast(a->d[3], a->d[3]);
    extract_fast(l[6]);
    VERIFY_CHECK(c1 == 0);
    l[7] = c0;

    secp256k1_scalar_reduce_512(r, l);
}

#undef sumadd
#undef sumadd_fast
#undef muladd
#undef muladd_fast
#undef muladd2
#undef extract
#undef extract_fast

#endif