1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_RANDOM_H
#define BITCOIN_RANDOM_H
#include <crypto/chacha20.h>
#include <crypto/common.h>
#include <uint256.h>
#include <stdint.h>
#include <limits>
/**
* Generate random data via the internal PRNG.
*
* These functions are designed to be fast (sub microsecond), but do not necessarily
* meaningfully add entropy to the PRNG state.
*
* Thread-safe.
*/
void GetRandBytes(unsigned char* buf, int num) noexcept;
uint64_t GetRand(uint64_t nMax) noexcept;
int GetRandInt(int nMax) noexcept;
uint256 GetRandHash() noexcept;
/**
* Gather entropy from various sources, feed it into the internal PRNG, and
* generate random data using it.
*
* This function will cause failure whenever the OS RNG fails.
*
* Thread-safe.
*/
void GetStrongRandBytes(unsigned char* buf, int num) noexcept;
/**
* Sleep for 1ms, gather entropy from various sources, and feed them to the PRNG state.
*
* Thread-safe.
*/
void RandAddSeedSleep();
/**
* Fast randomness source. This is seeded once with secure random data, but
* is completely deterministic and does not gather more entropy after that.
*
* This class is not thread-safe.
*/
class FastRandomContext {
private:
bool requires_seed;
ChaCha20 rng;
unsigned char bytebuf[64];
int bytebuf_size;
uint64_t bitbuf;
int bitbuf_size;
void RandomSeed();
void FillByteBuffer()
{
if (requires_seed) {
RandomSeed();
}
rng.Output(bytebuf, sizeof(bytebuf));
bytebuf_size = sizeof(bytebuf);
}
void FillBitBuffer()
{
bitbuf = rand64();
bitbuf_size = 64;
}
public:
explicit FastRandomContext(bool fDeterministic = false) noexcept;
/** Initialize with explicit seed (only for testing) */
explicit FastRandomContext(const uint256& seed) noexcept;
// Do not permit copying a FastRandomContext (move it, or create a new one to get reseeded).
FastRandomContext(const FastRandomContext&) = delete;
FastRandomContext(FastRandomContext&&) = delete;
FastRandomContext& operator=(const FastRandomContext&) = delete;
/** Move a FastRandomContext. If the original one is used again, it will be reseeded. */
FastRandomContext& operator=(FastRandomContext&& from) noexcept;
/** Generate a random 64-bit integer. */
uint64_t rand64() noexcept
{
if (bytebuf_size < 8) FillByteBuffer();
uint64_t ret = ReadLE64(bytebuf + 64 - bytebuf_size);
bytebuf_size -= 8;
return ret;
}
/** Generate a random (bits)-bit integer. */
uint64_t randbits(int bits) noexcept {
if (bits == 0) {
return 0;
} else if (bits > 32) {
return rand64() >> (64 - bits);
} else {
if (bitbuf_size < bits) FillBitBuffer();
uint64_t ret = bitbuf & (~(uint64_t)0 >> (64 - bits));
bitbuf >>= bits;
bitbuf_size -= bits;
return ret;
}
}
/** Generate a random integer in the range [0..range). */
uint64_t randrange(uint64_t range) noexcept
{
--range;
int bits = CountBits(range);
while (true) {
uint64_t ret = randbits(bits);
if (ret <= range) return ret;
}
}
/** Generate random bytes. */
std::vector<unsigned char> randbytes(size_t len);
/** Generate a random 32-bit integer. */
uint32_t rand32() noexcept { return randbits(32); }
/** generate a random uint256. */
uint256 rand256() noexcept;
/** Generate a random boolean. */
bool randbool() noexcept { return randbits(1); }
// Compatibility with the C++11 UniformRandomBitGenerator concept
typedef uint64_t result_type;
static constexpr uint64_t min() { return 0; }
static constexpr uint64_t max() { return std::numeric_limits<uint64_t>::max(); }
inline uint64_t operator()() noexcept { return rand64(); }
};
/** More efficient than using std::shuffle on a FastRandomContext.
*
* This is more efficient as std::shuffle will consume entropy in groups of
* 64 bits at the time and throw away most.
*
* This also works around a bug in libstdc++ std::shuffle that may cause
* type::operator=(type&&) to be invoked on itself, which the library's
* debug mode detects and panics on. This is a known issue, see
* https://stackoverflow.com/questions/22915325/avoiding-self-assignment-in-stdshuffle
*/
template<typename I, typename R>
void Shuffle(I first, I last, R&& rng)
{
while (first != last) {
size_t j = rng.randrange(last - first);
if (j) {
using std::swap;
swap(*first, *(first + j));
}
++first;
}
}
/* Number of random bytes returned by GetOSRand.
* When changing this constant make sure to change all call sites, and make
* sure that the underlying OS APIs for all platforms support the number.
* (many cap out at 256 bytes).
*/
static const int NUM_OS_RANDOM_BYTES = 32;
/** Get 32 bytes of system entropy. Do not use this in application code: use
* GetStrongRandBytes instead.
*/
void GetOSRand(unsigned char *ent32);
/** Check that OS randomness is available and returning the requested number
* of bytes.
*/
bool Random_SanityCheck();
/**
* Initialize global RNG state and log any CPU features that are used.
*
* Calling this function is optional. RNG state will be initialized when first
* needed if it is not called.
*/
void RandomInit();
#endif // BITCOIN_RANDOM_H
|