1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2018 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <random.h>
#include <crypto/sha512.h>
#include <support/cleanse.h>
#ifdef WIN32
#include <compat.h> // for Windows API
#include <wincrypt.h>
#endif
#include <logging.h> // for LogPrint()
#include <sync.h> // for WAIT_LOCK
#include <util/time.h> // for GetTime()
#include <stdlib.h>
#include <chrono>
#include <thread>
#include <support/allocators/secure.h>
#ifndef WIN32
#include <fcntl.h>
#include <sys/time.h>
#endif
#ifdef HAVE_SYS_GETRANDOM
#include <sys/syscall.h>
#include <linux/random.h>
#endif
#if defined(HAVE_GETENTROPY) || (defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX))
#include <unistd.h>
#endif
#if defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
#include <sys/random.h>
#endif
#ifdef HAVE_SYSCTL_ARND
#include <util/strencodings.h> // for ARRAYLEN
#include <sys/sysctl.h>
#endif
#include <mutex>
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
#include <cpuid.h>
#endif
#include <openssl/err.h>
#include <openssl/rand.h>
#include <openssl/conf.h>
[[noreturn]] static void RandFailure()
{
LogPrintf("Failed to read randomness, aborting\n");
std::abort();
}
static inline int64_t GetPerformanceCounter() noexcept
{
// Read the hardware time stamp counter when available.
// See https://en.wikipedia.org/wiki/Time_Stamp_Counter for more information.
#if defined(_MSC_VER) && (defined(_M_IX86) || defined(_M_X64))
return __rdtsc();
#elif !defined(_MSC_VER) && defined(__i386__)
uint64_t r = 0;
__asm__ volatile ("rdtsc" : "=A"(r)); // Constrain the r variable to the eax:edx pair.
return r;
#elif !defined(_MSC_VER) && (defined(__x86_64__) || defined(__amd64__))
uint64_t r1 = 0, r2 = 0;
__asm__ volatile ("rdtsc" : "=a"(r1), "=d"(r2)); // Constrain r1 to rax and r2 to rdx.
return (r2 << 32) | r1;
#else
// Fall back to using C++11 clock (usually microsecond or nanosecond precision)
return std::chrono::high_resolution_clock::now().time_since_epoch().count();
#endif
}
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
static bool rdrand_supported = false;
static constexpr uint32_t CPUID_F1_ECX_RDRAND = 0x40000000;
static void InitHardwareRand()
{
uint32_t eax, ebx, ecx, edx;
if (__get_cpuid(1, &eax, &ebx, &ecx, &edx) && (ecx & CPUID_F1_ECX_RDRAND)) {
rdrand_supported = true;
}
}
static void ReportHardwareRand()
{
if (rdrand_supported) {
// This must be done in a separate function, as HWRandInit() may be indirectly called
// from global constructors, before logging is initialized.
LogPrintf("Using RdRand as an additional entropy source\n");
}
}
#else
/* Access to other hardware random number generators could be added here later,
* assuming it is sufficiently fast (in the order of a few hundred CPU cycles).
* Slower sources should probably be invoked separately, and/or only from
* RandAddSeedSleep (which is called during idle background operation).
*/
static void InitHardwareRand() {}
static void ReportHardwareRand() {}
#endif
static bool GetHardwareRand(unsigned char* ent32) noexcept {
#if defined(__x86_64__) || defined(__amd64__) || defined(__i386__)
if (rdrand_supported) {
uint8_t ok;
// Not all assemblers support the rdrand instruction, write it in hex.
#ifdef __i386__
for (int iter = 0; iter < 4; ++iter) {
uint32_t r1, r2;
__asm__ volatile (".byte 0x0f, 0xc7, 0xf0;" // rdrand %eax
".byte 0x0f, 0xc7, 0xf2;" // rdrand %edx
"setc %2" :
"=a"(r1), "=d"(r2), "=q"(ok) :: "cc");
if (!ok) return false;
WriteLE32(ent32 + 8 * iter, r1);
WriteLE32(ent32 + 8 * iter + 4, r2);
}
#else
uint64_t r1, r2, r3, r4;
__asm__ volatile (".byte 0x48, 0x0f, 0xc7, 0xf0, " // rdrand %rax
"0x48, 0x0f, 0xc7, 0xf3, " // rdrand %rbx
"0x48, 0x0f, 0xc7, 0xf1, " // rdrand %rcx
"0x48, 0x0f, 0xc7, 0xf2; " // rdrand %rdx
"setc %4" :
"=a"(r1), "=b"(r2), "=c"(r3), "=d"(r4), "=q"(ok) :: "cc");
if (!ok) return false;
WriteLE64(ent32, r1);
WriteLE64(ent32 + 8, r2);
WriteLE64(ent32 + 16, r3);
WriteLE64(ent32 + 24, r4);
#endif
return true;
}
#endif
return false;
}
static void RandAddSeedPerfmon(CSHA512& hasher)
{
#ifdef WIN32
// Don't need this on Linux, OpenSSL automatically uses /dev/urandom
// Seed with the entire set of perfmon data
// This can take up to 2 seconds, so only do it every 10 minutes
static int64_t nLastPerfmon;
if (GetTime() < nLastPerfmon + 10 * 60)
return;
nLastPerfmon = GetTime();
std::vector<unsigned char> vData(250000, 0);
long ret = 0;
unsigned long nSize = 0;
const size_t nMaxSize = 10000000; // Bail out at more than 10MB of performance data
while (true) {
nSize = vData.size();
ret = RegQueryValueExA(HKEY_PERFORMANCE_DATA, "Global", nullptr, nullptr, vData.data(), &nSize);
if (ret != ERROR_MORE_DATA || vData.size() >= nMaxSize)
break;
vData.resize(std::max((vData.size() * 3) / 2, nMaxSize)); // Grow size of buffer exponentially
}
RegCloseKey(HKEY_PERFORMANCE_DATA);
if (ret == ERROR_SUCCESS) {
hasher.Write(vData.data(), nSize);
memory_cleanse(vData.data(), nSize);
} else {
// Performance data is only a best-effort attempt at improving the
// situation when the OS randomness (and other sources) aren't
// adequate. As a result, failure to read it is isn't considered critical,
// so we don't call RandFailure().
// TODO: Add logging when the logger is made functional before global
// constructors have been invoked.
}
#endif
}
#ifndef WIN32
/** Fallback: get 32 bytes of system entropy from /dev/urandom. The most
* compatible way to get cryptographic randomness on UNIX-ish platforms.
*/
static void GetDevURandom(unsigned char *ent32)
{
int f = open("/dev/urandom", O_RDONLY);
if (f == -1) {
RandFailure();
}
int have = 0;
do {
ssize_t n = read(f, ent32 + have, NUM_OS_RANDOM_BYTES - have);
if (n <= 0 || n + have > NUM_OS_RANDOM_BYTES) {
close(f);
RandFailure();
}
have += n;
} while (have < NUM_OS_RANDOM_BYTES);
close(f);
}
#endif
/** Get 32 bytes of system entropy. */
void GetOSRand(unsigned char *ent32)
{
#if defined(WIN32)
HCRYPTPROV hProvider;
int ret = CryptAcquireContextW(&hProvider, nullptr, nullptr, PROV_RSA_FULL, CRYPT_VERIFYCONTEXT);
if (!ret) {
RandFailure();
}
ret = CryptGenRandom(hProvider, NUM_OS_RANDOM_BYTES, ent32);
if (!ret) {
RandFailure();
}
CryptReleaseContext(hProvider, 0);
#elif defined(HAVE_SYS_GETRANDOM)
/* Linux. From the getrandom(2) man page:
* "If the urandom source has been initialized, reads of up to 256 bytes
* will always return as many bytes as requested and will not be
* interrupted by signals."
*/
int rv = syscall(SYS_getrandom, ent32, NUM_OS_RANDOM_BYTES, 0);
if (rv != NUM_OS_RANDOM_BYTES) {
if (rv < 0 && errno == ENOSYS) {
/* Fallback for kernel <3.17: the return value will be -1 and errno
* ENOSYS if the syscall is not available, in that case fall back
* to /dev/urandom.
*/
GetDevURandom(ent32);
} else {
RandFailure();
}
}
#elif defined(HAVE_GETENTROPY) && defined(__OpenBSD__)
/* On OpenBSD this can return up to 256 bytes of entropy, will return an
* error if more are requested.
* The call cannot return less than the requested number of bytes.
getentropy is explicitly limited to openbsd here, as a similar (but not
the same) function may exist on other platforms via glibc.
*/
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
#elif defined(HAVE_GETENTROPY_RAND) && defined(MAC_OSX)
// We need a fallback for OSX < 10.12
if (&getentropy != nullptr) {
if (getentropy(ent32, NUM_OS_RANDOM_BYTES) != 0) {
RandFailure();
}
} else {
GetDevURandom(ent32);
}
#elif defined(HAVE_SYSCTL_ARND)
/* FreeBSD and similar. It is possible for the call to return less
* bytes than requested, so need to read in a loop.
*/
static const int name[2] = {CTL_KERN, KERN_ARND};
int have = 0;
do {
size_t len = NUM_OS_RANDOM_BYTES - have;
if (sysctl(name, ARRAYLEN(name), ent32 + have, &len, nullptr, 0) != 0) {
RandFailure();
}
have += len;
} while (have < NUM_OS_RANDOM_BYTES);
#else
/* Fall back to /dev/urandom if there is no specific method implemented to
* get system entropy for this OS.
*/
GetDevURandom(ent32);
#endif
}
void LockingCallbackOpenSSL(int mode, int i, const char* file, int line);
namespace {
class RNGState {
Mutex m_mutex;
/* The RNG state consists of 256 bits of entropy, taken from the output of
* one operation's SHA512 output, and fed as input to the next one.
* Carrying 256 bits of entropy should be sufficient to guarantee
* unpredictability as long as any entropy source was ever unpredictable
* to an attacker. To protect against situations where an attacker might
* observe the RNG's state, fresh entropy is always mixed when
* GetStrongRandBytes is called.
*/
unsigned char m_state[32] GUARDED_BY(m_mutex) = {0};
uint64_t m_counter GUARDED_BY(m_mutex) = 0;
bool m_strongly_seeded GUARDED_BY(m_mutex) = false;
std::unique_ptr<Mutex[]> m_mutex_openssl;
public:
RNGState() noexcept
{
InitHardwareRand();
// Init OpenSSL library multithreading support
m_mutex_openssl.reset(new Mutex[CRYPTO_num_locks()]);
CRYPTO_set_locking_callback(LockingCallbackOpenSSL);
// OpenSSL can optionally load a config file which lists optional loadable modules and engines.
// We don't use them so we don't require the config. However some of our libs may call functions
// which attempt to load the config file, possibly resulting in an exit() or crash if it is missing
// or corrupt. Explicitly tell OpenSSL not to try to load the file. The result for our libs will be
// that the config appears to have been loaded and there are no modules/engines available.
OPENSSL_no_config();
}
~RNGState()
{
// Securely erase the memory used by the OpenSSL PRNG
RAND_cleanup();
// Shutdown OpenSSL library multithreading support
CRYPTO_set_locking_callback(nullptr);
}
/** Extract up to 32 bytes of entropy from the RNG state, mixing in new entropy from hasher.
*
* If this function has never been called with strong_seed = true, false is returned.
*/
bool MixExtract(unsigned char* out, size_t num, CSHA512&& hasher, bool strong_seed) noexcept
{
assert(num <= 32);
unsigned char buf[64];
static_assert(sizeof(buf) == CSHA512::OUTPUT_SIZE, "Buffer needs to have hasher's output size");
bool ret;
{
LOCK(m_mutex);
ret = (m_strongly_seeded |= strong_seed);
// Write the current state of the RNG into the hasher
hasher.Write(m_state, 32);
// Write a new counter number into the state
hasher.Write((const unsigned char*)&m_counter, sizeof(m_counter));
++m_counter;
// Finalize the hasher
hasher.Finalize(buf);
// Store the last 32 bytes of the hash output as new RNG state.
memcpy(m_state, buf + 32, 32);
}
// If desired, copy (up to) the first 32 bytes of the hash output as output.
if (num) {
assert(out != nullptr);
memcpy(out, buf, num);
}
// Best effort cleanup of internal state
hasher.Reset();
memory_cleanse(buf, 64);
return ret;
}
Mutex& GetOpenSSLMutex(int i) { return m_mutex_openssl[i]; }
};
RNGState& GetRNGState() noexcept
{
// This C++11 idiom relies on the guarantee that static variable are initialized
// on first call, even when multiple parallel calls are permitted.
static std::vector<RNGState, secure_allocator<RNGState>> g_rng(1);
return g_rng[0];
}
}
void LockingCallbackOpenSSL(int mode, int i, const char* file, int line) NO_THREAD_SAFETY_ANALYSIS
{
RNGState& rng = GetRNGState();
if (mode & CRYPTO_LOCK) {
rng.GetOpenSSLMutex(i).lock();
} else {
rng.GetOpenSSLMutex(i).unlock();
}
}
/* A note on the use of noexcept in the seeding functions below:
*
* None of the RNG code should ever throw any exception, with the sole exception
* of MilliSleep in SeedSleep, which can (and does) support interruptions which
* cause a boost::thread_interrupted to be thrown.
*
* This means that SeedSleep, and all functions that invoke it are throwing.
* However, we know that GetRandBytes() and GetStrongRandBytes() never trigger
* this sleeping logic, so they are noexcept. The same is true for all the
* GetRand*() functions that use GetRandBytes() indirectly.
*
* TODO: After moving away from interruptible boost-based thread management,
* everything can become noexcept here.
*/
static void SeedTimestamp(CSHA512& hasher) noexcept
{
int64_t perfcounter = GetPerformanceCounter();
hasher.Write((const unsigned char*)&perfcounter, sizeof(perfcounter));
}
static void SeedFast(CSHA512& hasher) noexcept
{
unsigned char buffer[32];
// Stack pointer to indirectly commit to thread/callstack
const unsigned char* ptr = buffer;
hasher.Write((const unsigned char*)&ptr, sizeof(ptr));
// Hardware randomness is very fast when available; use it always.
bool have_hw_rand = GetHardwareRand(buffer);
if (have_hw_rand) hasher.Write(buffer, sizeof(buffer));
// High-precision timestamp
SeedTimestamp(hasher);
}
static void SeedSlow(CSHA512& hasher) noexcept
{
unsigned char buffer[32];
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// OS randomness
GetOSRand(buffer);
hasher.Write(buffer, sizeof(buffer));
// OpenSSL RNG (for now)
RAND_bytes(buffer, sizeof(buffer));
hasher.Write(buffer, sizeof(buffer));
// High-precision timestamp.
//
// Note that we also commit to a timestamp in the Fast seeder, so we indirectly commit to a
// benchmark of all the entropy gathering sources in this function).
SeedTimestamp(hasher);
}
static void SeedSleep(CSHA512& hasher)
{
// Everything that the 'fast' seeder includes
SeedFast(hasher);
// High-precision timestamp
SeedTimestamp(hasher);
// Sleep for 1ms
MilliSleep(1);
// High-precision timestamp after sleeping (as we commit to both the time before and after, this measures the delay)
SeedTimestamp(hasher);
// Windows performance monitor data (once every 10 minutes)
RandAddSeedPerfmon(hasher);
}
static void SeedStartup(CSHA512& hasher) noexcept
{
#ifdef WIN32
RAND_screen();
#endif
// Everything that the 'slow' seeder includes.
SeedSlow(hasher);
// Windows performance monitor data.
RandAddSeedPerfmon(hasher);
}
enum class RNGLevel {
FAST, //!< Automatically called by GetRandBytes
SLOW, //!< Automatically called by GetStrongRandBytes
SLEEP, //!< Called by RandAddSeedSleep()
};
static void ProcRand(unsigned char* out, int num, RNGLevel level)
{
// Make sure the RNG is initialized first (as all Seed* function possibly need hwrand to be available).
RNGState& rng = GetRNGState();
assert(num <= 32);
CSHA512 hasher;
switch (level) {
case RNGLevel::FAST:
SeedFast(hasher);
break;
case RNGLevel::SLOW:
SeedSlow(hasher);
break;
case RNGLevel::SLEEP:
SeedSleep(hasher);
break;
}
// Combine with and update state
if (!rng.MixExtract(out, num, std::move(hasher), false)) {
// On the first invocation, also seed with SeedStartup().
CSHA512 startup_hasher;
SeedStartup(startup_hasher);
rng.MixExtract(out, num, std::move(startup_hasher), true);
}
// For anything but the 'fast' level, feed the resulting RNG output (after an additional hashing step) back into OpenSSL.
if (level != RNGLevel::FAST) {
unsigned char buf[64];
CSHA512().Write(out, num).Finalize(buf);
RAND_add(buf, sizeof(buf), num);
memory_cleanse(buf, 64);
}
}
void GetRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::FAST); }
void GetStrongRandBytes(unsigned char* buf, int num) noexcept { ProcRand(buf, num, RNGLevel::SLOW); }
void RandAddSeedSleep() { ProcRand(nullptr, 0, RNGLevel::SLEEP); }
bool g_mock_deterministic_tests{false};
uint64_t GetRand(uint64_t nMax) noexcept
{
return FastRandomContext(g_mock_deterministic_tests).randrange(nMax);
}
int GetRandInt(int nMax) noexcept
{
return GetRand(nMax);
}
uint256 GetRandHash() noexcept
{
uint256 hash;
GetRandBytes((unsigned char*)&hash, sizeof(hash));
return hash;
}
void FastRandomContext::RandomSeed()
{
uint256 seed = GetRandHash();
rng.SetKey(seed.begin(), 32);
requires_seed = false;
}
uint256 FastRandomContext::rand256() noexcept
{
if (bytebuf_size < 32) {
FillByteBuffer();
}
uint256 ret;
memcpy(ret.begin(), bytebuf + 64 - bytebuf_size, 32);
bytebuf_size -= 32;
return ret;
}
std::vector<unsigned char> FastRandomContext::randbytes(size_t len)
{
if (requires_seed) RandomSeed();
std::vector<unsigned char> ret(len);
if (len > 0) {
rng.Output(&ret[0], len);
}
return ret;
}
FastRandomContext::FastRandomContext(const uint256& seed) noexcept : requires_seed(false), bytebuf_size(0), bitbuf_size(0)
{
rng.SetKey(seed.begin(), 32);
}
bool Random_SanityCheck()
{
uint64_t start = GetPerformanceCounter();
/* This does not measure the quality of randomness, but it does test that
* OSRandom() overwrites all 32 bytes of the output given a maximum
* number of tries.
*/
static const ssize_t MAX_TRIES = 1024;
uint8_t data[NUM_OS_RANDOM_BYTES];
bool overwritten[NUM_OS_RANDOM_BYTES] = {}; /* Tracks which bytes have been overwritten at least once */
int num_overwritten;
int tries = 0;
/* Loop until all bytes have been overwritten at least once, or max number tries reached */
do {
memset(data, 0, NUM_OS_RANDOM_BYTES);
GetOSRand(data);
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
overwritten[x] |= (data[x] != 0);
}
num_overwritten = 0;
for (int x=0; x < NUM_OS_RANDOM_BYTES; ++x) {
if (overwritten[x]) {
num_overwritten += 1;
}
}
tries += 1;
} while (num_overwritten < NUM_OS_RANDOM_BYTES && tries < MAX_TRIES);
if (num_overwritten != NUM_OS_RANDOM_BYTES) return false; /* If this failed, bailed out after too many tries */
// Check that GetPerformanceCounter increases at least during a GetOSRand() call + 1ms sleep.
std::this_thread::sleep_for(std::chrono::milliseconds(1));
uint64_t stop = GetPerformanceCounter();
if (stop == start) return false;
// We called GetPerformanceCounter. Use it as entropy.
CSHA512 to_add;
to_add.Write((const unsigned char*)&start, sizeof(start));
to_add.Write((const unsigned char*)&stop, sizeof(stop));
GetRNGState().MixExtract(nullptr, 0, std::move(to_add), false);
return true;
}
FastRandomContext::FastRandomContext(bool fDeterministic) noexcept : requires_seed(!fDeterministic), bytebuf_size(0), bitbuf_size(0)
{
if (!fDeterministic) {
return;
}
uint256 seed;
rng.SetKey(seed.begin(), 32);
}
FastRandomContext& FastRandomContext::operator=(FastRandomContext&& from) noexcept
{
requires_seed = from.requires_seed;
rng = from.rng;
std::copy(std::begin(from.bytebuf), std::end(from.bytebuf), std::begin(bytebuf));
bytebuf_size = from.bytebuf_size;
bitbuf = from.bitbuf;
bitbuf_size = from.bitbuf_size;
from.requires_seed = true;
from.bytebuf_size = 0;
from.bitbuf_size = 0;
return *this;
}
void RandomInit()
{
// Invoke RNG code to trigger initialization (if not already performed)
ProcRand(nullptr, 0, RNGLevel::FAST);
ReportHardwareRand();
}
|