1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
|
// Copyright (c) 2009-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_PSBT_H
#define BITCOIN_PSBT_H
#include <node/transaction.h>
#include <policy/feerate.h>
#include <primitives/transaction.h>
#include <pubkey.h>
#include <script/keyorigin.h>
#include <script/sign.h>
#include <script/signingprovider.h>
#include <span.h>
#include <streams.h>
#include <optional>
// Magic bytes
static constexpr uint8_t PSBT_MAGIC_BYTES[5] = {'p', 's', 'b', 't', 0xff};
// Global types
static constexpr uint8_t PSBT_GLOBAL_UNSIGNED_TX = 0x00;
static constexpr uint8_t PSBT_GLOBAL_XPUB = 0x01;
static constexpr uint8_t PSBT_GLOBAL_VERSION = 0xFB;
static constexpr uint8_t PSBT_GLOBAL_PROPRIETARY = 0xFC;
// Input types
static constexpr uint8_t PSBT_IN_NON_WITNESS_UTXO = 0x00;
static constexpr uint8_t PSBT_IN_WITNESS_UTXO = 0x01;
static constexpr uint8_t PSBT_IN_PARTIAL_SIG = 0x02;
static constexpr uint8_t PSBT_IN_SIGHASH = 0x03;
static constexpr uint8_t PSBT_IN_REDEEMSCRIPT = 0x04;
static constexpr uint8_t PSBT_IN_WITNESSSCRIPT = 0x05;
static constexpr uint8_t PSBT_IN_BIP32_DERIVATION = 0x06;
static constexpr uint8_t PSBT_IN_SCRIPTSIG = 0x07;
static constexpr uint8_t PSBT_IN_SCRIPTWITNESS = 0x08;
static constexpr uint8_t PSBT_IN_RIPEMD160 = 0x0A;
static constexpr uint8_t PSBT_IN_SHA256 = 0x0B;
static constexpr uint8_t PSBT_IN_HASH160 = 0x0C;
static constexpr uint8_t PSBT_IN_HASH256 = 0x0D;
static constexpr uint8_t PSBT_IN_TAP_KEY_SIG = 0x13;
static constexpr uint8_t PSBT_IN_TAP_SCRIPT_SIG = 0x14;
static constexpr uint8_t PSBT_IN_TAP_LEAF_SCRIPT = 0x15;
static constexpr uint8_t PSBT_IN_TAP_BIP32_DERIVATION = 0x16;
static constexpr uint8_t PSBT_IN_TAP_INTERNAL_KEY = 0x17;
static constexpr uint8_t PSBT_IN_TAP_MERKLE_ROOT = 0x18;
static constexpr uint8_t PSBT_IN_PROPRIETARY = 0xFC;
// Output types
static constexpr uint8_t PSBT_OUT_REDEEMSCRIPT = 0x00;
static constexpr uint8_t PSBT_OUT_WITNESSSCRIPT = 0x01;
static constexpr uint8_t PSBT_OUT_BIP32_DERIVATION = 0x02;
static constexpr uint8_t PSBT_OUT_TAP_INTERNAL_KEY = 0x05;
static constexpr uint8_t PSBT_OUT_TAP_TREE = 0x06;
static constexpr uint8_t PSBT_OUT_TAP_BIP32_DERIVATION = 0x07;
static constexpr uint8_t PSBT_OUT_PROPRIETARY = 0xFC;
// The separator is 0x00. Reading this in means that the unserializer can interpret it
// as a 0 length key which indicates that this is the separator. The separator has no value.
static constexpr uint8_t PSBT_SEPARATOR = 0x00;
// BIP 174 does not specify a maximum file size, but we set a limit anyway
// to prevent reading a stream indefinitely and running out of memory.
const std::streamsize MAX_FILE_SIZE_PSBT = 100000000; // 100 MB
// PSBT version number
static constexpr uint32_t PSBT_HIGHEST_VERSION = 0;
/** A structure for PSBT proprietary types */
struct PSBTProprietary
{
uint64_t subtype;
std::vector<unsigned char> identifier;
std::vector<unsigned char> key;
std::vector<unsigned char> value;
bool operator<(const PSBTProprietary &b) const {
return key < b.key;
}
bool operator==(const PSBTProprietary &b) const {
return key == b.key;
}
};
// Takes a stream and multiple arguments and serializes them as if first serialized into a vector and then into the stream
// The resulting output into the stream has the total serialized length of all of the objects followed by all objects concatenated with each other.
template<typename Stream, typename... X>
void SerializeToVector(Stream& s, const X&... args)
{
WriteCompactSize(s, GetSerializeSizeMany(s.GetVersion(), args...));
SerializeMany(s, args...);
}
// Takes a stream and multiple arguments and unserializes them first as a vector then each object individually in the order provided in the arguments
template<typename Stream, typename... X>
void UnserializeFromVector(Stream& s, X&... args)
{
size_t expected_size = ReadCompactSize(s);
size_t remaining_before = s.size();
UnserializeMany(s, args...);
size_t remaining_after = s.size();
if (remaining_after + expected_size != remaining_before) {
throw std::ios_base::failure("Size of value was not the stated size");
}
}
// Deserialize bytes of given length from the stream as a KeyOriginInfo
template<typename Stream>
KeyOriginInfo DeserializeKeyOrigin(Stream& s, uint64_t length)
{
// Read in key path
if (length % 4 || length == 0) {
throw std::ios_base::failure("Invalid length for HD key path");
}
KeyOriginInfo hd_keypath;
s >> hd_keypath.fingerprint;
for (unsigned int i = 4; i < length; i += sizeof(uint32_t)) {
uint32_t index;
s >> index;
hd_keypath.path.push_back(index);
}
return hd_keypath;
}
// Deserialize a length prefixed KeyOriginInfo from a stream
template<typename Stream>
void DeserializeHDKeypath(Stream& s, KeyOriginInfo& hd_keypath)
{
hd_keypath = DeserializeKeyOrigin(s, ReadCompactSize(s));
}
// Deserialize HD keypaths into a map
template<typename Stream>
void DeserializeHDKeypaths(Stream& s, const std::vector<unsigned char>& key, std::map<CPubKey, KeyOriginInfo>& hd_keypaths)
{
// Make sure that the key is the size of pubkey + 1
if (key.size() != CPubKey::SIZE + 1 && key.size() != CPubKey::COMPRESSED_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type BIP32 keypath");
}
// Read in the pubkey from key
CPubKey pubkey(key.begin() + 1, key.end());
if (!pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (hd_keypaths.count(pubkey) > 0) {
throw std::ios_base::failure("Duplicate Key, pubkey derivation path already provided");
}
KeyOriginInfo keypath;
DeserializeHDKeypath(s, keypath);
// Add to map
hd_keypaths.emplace(pubkey, std::move(keypath));
}
// Serialize a KeyOriginInfo to a stream
template<typename Stream>
void SerializeKeyOrigin(Stream& s, KeyOriginInfo hd_keypath)
{
s << hd_keypath.fingerprint;
for (const auto& path : hd_keypath.path) {
s << path;
}
}
// Serialize a length prefixed KeyOriginInfo to a stream
template<typename Stream>
void SerializeHDKeypath(Stream& s, KeyOriginInfo hd_keypath)
{
WriteCompactSize(s, (hd_keypath.path.size() + 1) * sizeof(uint32_t));
SerializeKeyOrigin(s, hd_keypath);
}
// Serialize HD keypaths to a stream from a map
template<typename Stream>
void SerializeHDKeypaths(Stream& s, const std::map<CPubKey, KeyOriginInfo>& hd_keypaths, CompactSizeWriter type)
{
for (auto keypath_pair : hd_keypaths) {
if (!keypath_pair.first.IsValid()) {
throw std::ios_base::failure("Invalid CPubKey being serialized");
}
SerializeToVector(s, type, Span{keypath_pair.first});
SerializeHDKeypath(s, keypath_pair.second);
}
}
/** A structure for PSBTs which contain per-input information */
struct PSBTInput
{
CTransactionRef non_witness_utxo;
CTxOut witness_utxo;
CScript redeem_script;
CScript witness_script;
CScript final_script_sig;
CScriptWitness final_script_witness;
std::map<CPubKey, KeyOriginInfo> hd_keypaths;
std::map<CKeyID, SigPair> partial_sigs;
std::map<uint160, std::vector<unsigned char>> ripemd160_preimages;
std::map<uint256, std::vector<unsigned char>> sha256_preimages;
std::map<uint160, std::vector<unsigned char>> hash160_preimages;
std::map<uint256, std::vector<unsigned char>> hash256_preimages;
// Taproot fields
std::vector<unsigned char> m_tap_key_sig;
std::map<std::pair<XOnlyPubKey, uint256>, std::vector<unsigned char>> m_tap_script_sigs;
std::map<std::pair<CScript, int>, std::set<std::vector<unsigned char>, ShortestVectorFirstComparator>> m_tap_scripts;
std::map<XOnlyPubKey, std::pair<std::set<uint256>, KeyOriginInfo>> m_tap_bip32_paths;
XOnlyPubKey m_tap_internal_key;
uint256 m_tap_merkle_root;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::set<PSBTProprietary> m_proprietary;
std::optional<int> sighash_type;
bool IsNull() const;
void FillSignatureData(SignatureData& sigdata) const;
void FromSignatureData(const SignatureData& sigdata);
void Merge(const PSBTInput& input);
PSBTInput() {}
template <typename Stream>
inline void Serialize(Stream& s) const {
// Write the utxo
if (non_witness_utxo) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_NON_WITNESS_UTXO));
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
SerializeToVector(os, non_witness_utxo);
}
if (!witness_utxo.IsNull()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_WITNESS_UTXO));
SerializeToVector(s, witness_utxo);
}
if (final_script_sig.empty() && final_script_witness.IsNull()) {
// Write any partial signatures
for (auto sig_pair : partial_sigs) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_PARTIAL_SIG), Span{sig_pair.second.first});
s << sig_pair.second.second;
}
// Write the sighash type
if (sighash_type != std::nullopt) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SIGHASH));
SerializeToVector(s, *sighash_type);
}
// Write the redeem script
if (!redeem_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_REDEEMSCRIPT));
s << redeem_script;
}
// Write the witness script
if (!witness_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_WITNESSSCRIPT));
s << witness_script;
}
// Write any hd keypaths
SerializeHDKeypaths(s, hd_keypaths, CompactSizeWriter(PSBT_IN_BIP32_DERIVATION));
// Write any ripemd160 preimage
for (const auto& [hash, preimage] : ripemd160_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_RIPEMD160), Span{hash});
s << preimage;
}
// Write any sha256 preimage
for (const auto& [hash, preimage] : sha256_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SHA256), Span{hash});
s << preimage;
}
// Write any hash160 preimage
for (const auto& [hash, preimage] : hash160_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_HASH160), Span{hash});
s << preimage;
}
// Write any hash256 preimage
for (const auto& [hash, preimage] : hash256_preimages) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_HASH256), Span{hash});
s << preimage;
}
// Write taproot key sig
if (!m_tap_key_sig.empty()) {
SerializeToVector(s, PSBT_IN_TAP_KEY_SIG);
s << m_tap_key_sig;
}
// Write taproot script sigs
for (const auto& [pubkey_leaf, sig] : m_tap_script_sigs) {
const auto& [xonly, leaf_hash] = pubkey_leaf;
SerializeToVector(s, PSBT_IN_TAP_SCRIPT_SIG, xonly, leaf_hash);
s << sig;
}
// Write taproot leaf scripts
for (const auto& [leaf, control_blocks] : m_tap_scripts) {
const auto& [script, leaf_ver] = leaf;
for (const auto& control_block : control_blocks) {
SerializeToVector(s, PSBT_IN_TAP_LEAF_SCRIPT, Span{control_block});
std::vector<unsigned char> value_v(script.begin(), script.end());
value_v.push_back((uint8_t)leaf_ver);
s << value_v;
}
}
// Write taproot bip32 keypaths
for (const auto& [xonly, leaf_origin] : m_tap_bip32_paths) {
const auto& [leaf_hashes, origin] = leaf_origin;
SerializeToVector(s, PSBT_IN_TAP_BIP32_DERIVATION, xonly);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
s_value << leaf_hashes;
SerializeKeyOrigin(s_value, origin);
s << value;
}
// Write taproot internal key
if (!m_tap_internal_key.IsNull()) {
SerializeToVector(s, PSBT_IN_TAP_INTERNAL_KEY);
s << ToByteVector(m_tap_internal_key);
}
// Write taproot merkle root
if (!m_tap_merkle_root.IsNull()) {
SerializeToVector(s, PSBT_IN_TAP_MERKLE_ROOT);
SerializeToVector(s, m_tap_merkle_root);
}
}
// Write script sig
if (!final_script_sig.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SCRIPTSIG));
s << final_script_sig;
}
// write script witness
if (!final_script_witness.IsNull()) {
SerializeToVector(s, CompactSizeWriter(PSBT_IN_SCRIPTWITNESS));
SerializeToVector(s, final_script_witness.stack);
}
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
s << PSBT_SEPARATOR;
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Read loop
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_IN_NON_WITNESS_UTXO:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input non-witness utxo already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Non-witness utxo key is more than one byte type");
}
// Set the stream to unserialize with witness since this is always a valid network transaction
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() & ~SERIALIZE_TRANSACTION_NO_WITNESS);
UnserializeFromVector(os, non_witness_utxo);
break;
}
case PSBT_IN_WITNESS_UTXO:
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input witness utxo already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Witness utxo key is more than one byte type");
}
UnserializeFromVector(s, witness_utxo);
break;
case PSBT_IN_PARTIAL_SIG:
{
// Make sure that the key is the size of pubkey + 1
if (key.size() != CPubKey::SIZE + 1 && key.size() != CPubKey::COMPRESSED_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type partial signature pubkey");
}
// Read in the pubkey from key
CPubKey pubkey(key.begin() + 1, key.end());
if (!pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (partial_sigs.count(pubkey.GetID()) > 0) {
throw std::ios_base::failure("Duplicate Key, input partial signature for pubkey already provided");
}
// Read in the signature from value
std::vector<unsigned char> sig;
s >> sig;
// Add to list
partial_sigs.emplace(pubkey.GetID(), SigPair(pubkey, std::move(sig)));
break;
}
case PSBT_IN_SIGHASH:
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input sighash type already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Sighash type key is more than one byte type");
}
int sighash;
UnserializeFromVector(s, sighash);
sighash_type = sighash;
break;
case PSBT_IN_REDEEMSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input redeemScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input redeemScript key is more than one byte type");
}
s >> redeem_script;
break;
}
case PSBT_IN_WITNESSSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input witnessScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input witnessScript key is more than one byte type");
}
s >> witness_script;
break;
}
case PSBT_IN_BIP32_DERIVATION:
{
DeserializeHDKeypaths(s, key, hd_keypaths);
break;
}
case PSBT_IN_SCRIPTSIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input final scriptSig already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Final scriptSig key is more than one byte type");
}
s >> final_script_sig;
break;
}
case PSBT_IN_SCRIPTWITNESS:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input final scriptWitness already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Final scriptWitness key is more than one byte type");
}
UnserializeFromVector(s, final_script_witness.stack);
break;
}
case PSBT_IN_RIPEMD160:
{
// Make sure that the key is the size of a ripemd160 hash + 1
if (key.size() != CRIPEMD160::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type ripemd160 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint160 hash(hash_vec);
if (ripemd160_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input ripemd160 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
ripemd160_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_SHA256:
{
// Make sure that the key is the size of a sha256 hash + 1
if (key.size() != CSHA256::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type sha256 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint256 hash(hash_vec);
if (sha256_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input sha256 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
sha256_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_HASH160:
{
// Make sure that the key is the size of a hash160 hash + 1
if (key.size() != CHash160::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type hash160 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint160 hash(hash_vec);
if (hash160_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input hash160 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
hash160_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_HASH256:
{
// Make sure that the key is the size of a hash256 hash + 1
if (key.size() != CHash256::OUTPUT_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type hash256 preimage");
}
// Read in the hash from key
std::vector<unsigned char> hash_vec(key.begin() + 1, key.end());
uint256 hash(hash_vec);
if (hash256_preimages.count(hash) > 0) {
throw std::ios_base::failure("Duplicate Key, input hash256 preimage already provided");
}
// Read in the preimage from value
std::vector<unsigned char> preimage;
s >> preimage;
// Add to preimages list
hash256_preimages.emplace(hash, std::move(preimage));
break;
}
case PSBT_IN_TAP_KEY_SIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot key signature already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot key signature key is more than one byte type");
}
s >> m_tap_key_sig;
if (m_tap_key_sig.size() < 64) {
throw std::ios_base::failure("Input Taproot key path signature is shorter than 64 bytes");
} else if (m_tap_key_sig.size() > 65) {
throw std::ios_base::failure("Input Taproot key path signature is longer than 65 bytes");
}
break;
}
case PSBT_IN_TAP_SCRIPT_SIG:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot script signature already provided");
} else if (key.size() != 65) {
throw std::ios_base::failure("Input Taproot script signature key is not 65 bytes");
}
SpanReader s_key(s.GetType(), s.GetVersion(), Span{key}.subspan(1));
XOnlyPubKey xonly;
uint256 hash;
s_key >> xonly;
s_key >> hash;
std::vector<unsigned char> sig;
s >> sig;
if (sig.size() < 64) {
throw std::ios_base::failure("Input Taproot script path signature is shorter than 64 bytes");
} else if (sig.size() > 65) {
throw std::ios_base::failure("Input Taproot script path signature is longer than 65 bytes");
}
m_tap_script_sigs.emplace(std::make_pair(xonly, hash), sig);
break;
}
case PSBT_IN_TAP_LEAF_SCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot leaf script already provided");
} else if (key.size() < 34) {
throw std::ios_base::failure("Taproot leaf script key is not at least 34 bytes");
} else if ((key.size() - 2) % 32 != 0) {
throw std::ios_base::failure("Input Taproot leaf script key's control block size is not valid");
}
std::vector<unsigned char> script_v;
s >> script_v;
if (script_v.empty()) {
throw std::ios_base::failure("Input Taproot leaf script must be at least 1 byte");
}
uint8_t leaf_ver = script_v.back();
script_v.pop_back();
const auto leaf_script = std::make_pair(CScript(script_v.begin(), script_v.end()), (int)leaf_ver);
m_tap_scripts[leaf_script].insert(std::vector<unsigned char>(key.begin() + 1, key.end()));
break;
}
case PSBT_IN_TAP_BIP32_DERIVATION:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot BIP32 keypath already provided");
} else if (key.size() != 33) {
throw std::ios_base::failure("Input Taproot BIP32 keypath key is not at 33 bytes");
}
SpanReader s_key(s.GetType(), s.GetVersion(), Span{key}.subspan(1));
XOnlyPubKey xonly;
s_key >> xonly;
std::set<uint256> leaf_hashes;
uint64_t value_len = ReadCompactSize(s);
size_t before_hashes = s.size();
s >> leaf_hashes;
size_t after_hashes = s.size();
size_t hashes_len = before_hashes - after_hashes;
size_t origin_len = value_len - hashes_len;
m_tap_bip32_paths.emplace(xonly, std::make_pair(leaf_hashes, DeserializeKeyOrigin(s, origin_len)));
break;
}
case PSBT_IN_TAP_INTERNAL_KEY:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot internal key already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot internal key key is more than one byte type");
}
UnserializeFromVector(s, m_tap_internal_key);
break;
}
case PSBT_IN_TAP_MERKLE_ROOT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, input Taproot merkle root already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Input Taproot merkle root key is more than one byte type");
}
UnserializeFromVector(s, m_tap_merkle_root);
break;
}
case PSBT_IN_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default:
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
break;
}
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of an input map");
}
}
template <typename Stream>
PSBTInput(deserialize_type, Stream& s) {
Unserialize(s);
}
};
/** A structure for PSBTs which contains per output information */
struct PSBTOutput
{
CScript redeem_script;
CScript witness_script;
std::map<CPubKey, KeyOriginInfo> hd_keypaths;
XOnlyPubKey m_tap_internal_key;
std::optional<TaprootBuilder> m_tap_tree;
std::map<XOnlyPubKey, std::pair<std::set<uint256>, KeyOriginInfo>> m_tap_bip32_paths;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::set<PSBTProprietary> m_proprietary;
bool IsNull() const;
void FillSignatureData(SignatureData& sigdata) const;
void FromSignatureData(const SignatureData& sigdata);
void Merge(const PSBTOutput& output);
PSBTOutput() {}
template <typename Stream>
inline void Serialize(Stream& s) const {
// Write the redeem script
if (!redeem_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_OUT_REDEEMSCRIPT));
s << redeem_script;
}
// Write the witness script
if (!witness_script.empty()) {
SerializeToVector(s, CompactSizeWriter(PSBT_OUT_WITNESSSCRIPT));
s << witness_script;
}
// Write any hd keypaths
SerializeHDKeypaths(s, hd_keypaths, CompactSizeWriter(PSBT_OUT_BIP32_DERIVATION));
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write taproot internal key
if (!m_tap_internal_key.IsNull()) {
SerializeToVector(s, PSBT_OUT_TAP_INTERNAL_KEY);
s << ToByteVector(m_tap_internal_key);
}
// Write taproot tree
if (m_tap_tree.has_value()) {
SerializeToVector(s, PSBT_OUT_TAP_TREE);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
const auto& tuples = m_tap_tree->GetTreeTuples();
for (const auto& tuple : tuples) {
uint8_t depth = std::get<0>(tuple);
uint8_t leaf_ver = std::get<1>(tuple);
CScript script = std::get<2>(tuple);
s_value << depth;
s_value << leaf_ver;
s_value << script;
}
s << value;
}
// Write taproot bip32 keypaths
for (const auto& [xonly, leaf] : m_tap_bip32_paths) {
const auto& [leaf_hashes, origin] = leaf;
SerializeToVector(s, PSBT_OUT_TAP_BIP32_DERIVATION, xonly);
std::vector<unsigned char> value;
CVectorWriter s_value(s.GetType(), s.GetVersion(), value, 0);
s_value << leaf_hashes;
SerializeKeyOrigin(s_value, origin);
s << value;
}
// Write unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
s << PSBT_SEPARATOR;
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Read loop
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_OUT_REDEEMSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output redeemScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output redeemScript key is more than one byte type");
}
s >> redeem_script;
break;
}
case PSBT_OUT_WITNESSSCRIPT:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output witnessScript already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output witnessScript key is more than one byte type");
}
s >> witness_script;
break;
}
case PSBT_OUT_BIP32_DERIVATION:
{
DeserializeHDKeypaths(s, key, hd_keypaths);
break;
}
case PSBT_OUT_TAP_INTERNAL_KEY:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot internal key already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output Taproot internal key key is more than one byte type");
}
UnserializeFromVector(s, m_tap_internal_key);
break;
}
case PSBT_OUT_TAP_TREE:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot tree already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Output Taproot tree key is more than one byte type");
}
m_tap_tree.emplace();
std::vector<unsigned char> tree_v;
s >> tree_v;
SpanReader s_tree(s.GetType(), s.GetVersion(), tree_v);
while (!s_tree.empty()) {
uint8_t depth;
uint8_t leaf_ver;
CScript script;
s_tree >> depth;
s_tree >> leaf_ver;
s_tree >> script;
if (depth > TAPROOT_CONTROL_MAX_NODE_COUNT) {
throw std::ios_base::failure("Output Taproot tree has as leaf greater than Taproot maximum depth");
}
if ((leaf_ver & ~TAPROOT_LEAF_MASK) != 0) {
throw std::ios_base::failure("Output Taproot tree has a leaf with an invalid leaf version");
}
m_tap_tree->Add((int)depth, script, (int)leaf_ver, true /* track */);
}
if (!m_tap_tree->IsComplete()) {
throw std::ios_base::failure("Output Taproot tree is malformed");
}
break;
}
case PSBT_OUT_TAP_BIP32_DERIVATION:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, output Taproot BIP32 keypath already provided");
} else if (key.size() != 33) {
throw std::ios_base::failure("Output Taproot BIP32 keypath key is not at 33 bytes");
}
XOnlyPubKey xonly(uint256({key.begin() + 1, key.begin() + 33}));
std::set<uint256> leaf_hashes;
uint64_t value_len = ReadCompactSize(s);
size_t before_hashes = s.size();
s >> leaf_hashes;
size_t after_hashes = s.size();
size_t hashes_len = before_hashes - after_hashes;
size_t origin_len = value_len - hashes_len;
m_tap_bip32_paths.emplace(xonly, std::make_pair(leaf_hashes, DeserializeKeyOrigin(s, origin_len)));
break;
}
case PSBT_OUT_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default: {
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
break;
}
}
}
// Finalize m_tap_tree so that all of the computed things are computed
if (m_tap_tree.has_value() && m_tap_tree->IsComplete() && m_tap_internal_key.IsFullyValid()) {
m_tap_tree->Finalize(m_tap_internal_key);
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of an output map");
}
}
template <typename Stream>
PSBTOutput(deserialize_type, Stream& s) {
Unserialize(s);
}
};
/** A version of CTransaction with the PSBT format*/
struct PartiallySignedTransaction
{
std::optional<CMutableTransaction> tx;
// We use a vector of CExtPubKey in the event that there happens to be the same KeyOriginInfos for different CExtPubKeys
// Note that this map swaps the key and values from the serialization
std::map<KeyOriginInfo, std::set<CExtPubKey>> m_xpubs;
std::vector<PSBTInput> inputs;
std::vector<PSBTOutput> outputs;
std::map<std::vector<unsigned char>, std::vector<unsigned char>> unknown;
std::optional<uint32_t> m_version;
std::set<PSBTProprietary> m_proprietary;
bool IsNull() const;
uint32_t GetVersion() const;
/** Merge psbt into this. The two psbts must have the same underlying CTransaction (i.e. the
* same actual Bitcoin transaction.) Returns true if the merge succeeded, false otherwise. */
[[nodiscard]] bool Merge(const PartiallySignedTransaction& psbt);
bool AddInput(const CTxIn& txin, PSBTInput& psbtin);
bool AddOutput(const CTxOut& txout, const PSBTOutput& psbtout);
PartiallySignedTransaction() {}
explicit PartiallySignedTransaction(const CMutableTransaction& tx);
/**
* Finds the UTXO for a given input index
*
* @param[out] utxo The UTXO of the input if found
* @param[in] input_index Index of the input to retrieve the UTXO of
* @return Whether the UTXO for the specified input was found
*/
bool GetInputUTXO(CTxOut& utxo, int input_index) const;
template <typename Stream>
inline void Serialize(Stream& s) const {
// magic bytes
s << PSBT_MAGIC_BYTES;
// unsigned tx flag
SerializeToVector(s, CompactSizeWriter(PSBT_GLOBAL_UNSIGNED_TX));
// Write serialized tx to a stream
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
SerializeToVector(os, *tx);
// Write xpubs
for (const auto& xpub_pair : m_xpubs) {
for (const auto& xpub : xpub_pair.second) {
unsigned char ser_xpub[BIP32_EXTKEY_WITH_VERSION_SIZE];
xpub.EncodeWithVersion(ser_xpub);
// Note that the serialization swaps the key and value
// The xpub is the key (for uniqueness) while the path is the value
SerializeToVector(s, PSBT_GLOBAL_XPUB, ser_xpub);
SerializeHDKeypath(s, xpub_pair.first);
}
}
// PSBT version
if (GetVersion() > 0) {
SerializeToVector(s, CompactSizeWriter(PSBT_GLOBAL_VERSION));
SerializeToVector(s, *m_version);
}
// Write proprietary things
for (const auto& entry : m_proprietary) {
s << entry.key;
s << entry.value;
}
// Write the unknown things
for (auto& entry : unknown) {
s << entry.first;
s << entry.second;
}
// Separator
s << PSBT_SEPARATOR;
// Write inputs
for (const PSBTInput& input : inputs) {
s << input;
}
// Write outputs
for (const PSBTOutput& output : outputs) {
s << output;
}
}
template <typename Stream>
inline void Unserialize(Stream& s) {
// Read the magic bytes
uint8_t magic[5];
s >> magic;
if (!std::equal(magic, magic + 5, PSBT_MAGIC_BYTES)) {
throw std::ios_base::failure("Invalid PSBT magic bytes");
}
// Used for duplicate key detection
std::set<std::vector<unsigned char>> key_lookup;
// Track the global xpubs we have already seen. Just for sanity checking
std::set<CExtPubKey> global_xpubs;
// Read global data
bool found_sep = false;
while(!s.empty()) {
// Read
std::vector<unsigned char> key;
s >> key;
// the key is empty if that was actually a separator byte
// This is a special case for key lengths 0 as those are not allowed (except for separator)
if (key.empty()) {
found_sep = true;
break;
}
// Type is compact size uint at beginning of key
SpanReader skey(s.GetType(), s.GetVersion(), key);
uint64_t type = ReadCompactSize(skey);
// Do stuff based on type
switch(type) {
case PSBT_GLOBAL_UNSIGNED_TX:
{
if (!key_lookup.emplace(key).second) {
throw std::ios_base::failure("Duplicate Key, unsigned tx already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Global unsigned tx key is more than one byte type");
}
CMutableTransaction mtx;
// Set the stream to serialize with non-witness since this should always be non-witness
OverrideStream<Stream> os(&s, s.GetType(), s.GetVersion() | SERIALIZE_TRANSACTION_NO_WITNESS);
UnserializeFromVector(os, mtx);
tx = std::move(mtx);
// Make sure that all scriptSigs and scriptWitnesses are empty
for (const CTxIn& txin : tx->vin) {
if (!txin.scriptSig.empty() || !txin.scriptWitness.IsNull()) {
throw std::ios_base::failure("Unsigned tx does not have empty scriptSigs and scriptWitnesses.");
}
}
break;
}
case PSBT_GLOBAL_XPUB:
{
if (key.size() != BIP32_EXTKEY_WITH_VERSION_SIZE + 1) {
throw std::ios_base::failure("Size of key was not the expected size for the type global xpub");
}
// Read in the xpub from key
CExtPubKey xpub;
xpub.DecodeWithVersion(&key.data()[1]);
if (!xpub.pubkey.IsFullyValid()) {
throw std::ios_base::failure("Invalid pubkey");
}
if (global_xpubs.count(xpub) > 0) {
throw std::ios_base::failure("Duplicate key, global xpub already provided");
}
global_xpubs.insert(xpub);
// Read in the keypath from stream
KeyOriginInfo keypath;
DeserializeHDKeypath(s, keypath);
// Note that we store these swapped to make searches faster.
// Serialization uses xpub -> keypath to enqure key uniqueness
if (m_xpubs.count(keypath) == 0) {
// Make a new set to put the xpub in
m_xpubs[keypath] = {xpub};
} else {
// Insert xpub into existing set
m_xpubs[keypath].insert(xpub);
}
break;
}
case PSBT_GLOBAL_VERSION:
{
if (m_version) {
throw std::ios_base::failure("Duplicate Key, version already provided");
} else if (key.size() != 1) {
throw std::ios_base::failure("Global version key is more than one byte type");
}
uint32_t v;
UnserializeFromVector(s, v);
m_version = v;
if (*m_version > PSBT_HIGHEST_VERSION) {
throw std::ios_base::failure("Unsupported version number");
}
break;
}
case PSBT_GLOBAL_PROPRIETARY:
{
PSBTProprietary this_prop;
skey >> this_prop.identifier;
this_prop.subtype = ReadCompactSize(skey);
this_prop.key = key;
if (m_proprietary.count(this_prop) > 0) {
throw std::ios_base::failure("Duplicate Key, proprietary key already found");
}
s >> this_prop.value;
m_proprietary.insert(this_prop);
break;
}
// Unknown stuff
default: {
if (unknown.count(key) > 0) {
throw std::ios_base::failure("Duplicate Key, key for unknown value already provided");
}
// Read in the value
std::vector<unsigned char> val_bytes;
s >> val_bytes;
unknown.emplace(std::move(key), std::move(val_bytes));
}
}
}
if (!found_sep) {
throw std::ios_base::failure("Separator is missing at the end of the global map");
}
// Make sure that we got an unsigned tx
if (!tx) {
throw std::ios_base::failure("No unsigned transcation was provided");
}
// Read input data
unsigned int i = 0;
while (!s.empty() && i < tx->vin.size()) {
PSBTInput input;
s >> input;
inputs.push_back(input);
// Make sure the non-witness utxo matches the outpoint
if (input.non_witness_utxo && input.non_witness_utxo->GetHash() != tx->vin[i].prevout.hash) {
throw std::ios_base::failure("Non-witness UTXO does not match outpoint hash");
}
++i;
}
// Make sure that the number of inputs matches the number of inputs in the transaction
if (inputs.size() != tx->vin.size()) {
throw std::ios_base::failure("Inputs provided does not match the number of inputs in transaction.");
}
// Read output data
i = 0;
while (!s.empty() && i < tx->vout.size()) {
PSBTOutput output;
s >> output;
outputs.push_back(output);
++i;
}
// Make sure that the number of outputs matches the number of outputs in the transaction
if (outputs.size() != tx->vout.size()) {
throw std::ios_base::failure("Outputs provided does not match the number of outputs in transaction.");
}
}
template <typename Stream>
PartiallySignedTransaction(deserialize_type, Stream& s) {
Unserialize(s);
}
};
enum class PSBTRole {
CREATOR,
UPDATER,
SIGNER,
FINALIZER,
EXTRACTOR
};
std::string PSBTRoleName(PSBTRole role);
/** Compute a PrecomputedTransactionData object from a psbt. */
PrecomputedTransactionData PrecomputePSBTData(const PartiallySignedTransaction& psbt);
/** Checks whether a PSBTInput is already signed. */
bool PSBTInputSigned(const PSBTInput& input);
/** Signs a PSBTInput, verifying that all provided data matches what is being signed.
*
* txdata should be the output of PrecomputePSBTData (which can be shared across
* multiple SignPSBTInput calls). If it is nullptr, a dummy signature will be created.
**/
bool SignPSBTInput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index, const PrecomputedTransactionData* txdata, int sighash = SIGHASH_ALL, SignatureData* out_sigdata = nullptr, bool finalize = true);
/** Counts the unsigned inputs of a PSBT. */
size_t CountPSBTUnsignedInputs(const PartiallySignedTransaction& psbt);
/** Updates a PSBTOutput with information from provider.
*
* This fills in the redeem_script, witness_script, and hd_keypaths where possible.
*/
void UpdatePSBTOutput(const SigningProvider& provider, PartiallySignedTransaction& psbt, int index);
/**
* Finalizes a PSBT if possible, combining partial signatures.
*
* @param[in,out] psbtx PartiallySignedTransaction to finalize
* return True if the PSBT is now complete, false otherwise
*/
bool FinalizePSBT(PartiallySignedTransaction& psbtx);
/**
* Finalizes a PSBT if possible, and extracts it to a CMutableTransaction if it could be finalized.
*
* @param[in] psbtx PartiallySignedTransaction
* @param[out] result CMutableTransaction representing the complete transaction, if successful
* @return True if we successfully extracted the transaction, false otherwise
*/
bool FinalizeAndExtractPSBT(PartiallySignedTransaction& psbtx, CMutableTransaction& result);
/**
* Combines PSBTs with the same underlying transaction, resulting in a single PSBT with all partial signatures from each input.
*
* @param[out] out the combined PSBT, if successful
* @param[in] psbtxs the PSBTs to combine
* @return error (OK if we successfully combined the transactions, other error if they were not compatible)
*/
[[nodiscard]] TransactionError CombinePSBTs(PartiallySignedTransaction& out, const std::vector<PartiallySignedTransaction>& psbtxs);
//! Decode a base64ed PSBT into a PartiallySignedTransaction
[[nodiscard]] bool DecodeBase64PSBT(PartiallySignedTransaction& decoded_psbt, const std::string& base64_psbt, std::string& error);
//! Decode a raw (binary blob) PSBT into a PartiallySignedTransaction
[[nodiscard]] bool DecodeRawPSBT(PartiallySignedTransaction& decoded_psbt, Span<const std::byte> raw_psbt, std::string& error);
#endif // BITCOIN_PSBT_H
|