1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include "policy/fees.h"
#include "policy/policy.h"
#include "amount.h"
#include "primitives/transaction.h"
#include "random.h"
#include "streams.h"
#include "txmempool.h"
#include "util.h"
void TxConfirmStats::Initialize(std::vector<double>& defaultBuckets,
unsigned int maxConfirms, double _decay, std::string _dataTypeString)
{
decay = _decay;
dataTypeString = _dataTypeString;
for (unsigned int i = 0; i < defaultBuckets.size(); i++) {
buckets.push_back(defaultBuckets[i]);
bucketMap[defaultBuckets[i]] = i;
}
confAvg.resize(maxConfirms);
curBlockConf.resize(maxConfirms);
unconfTxs.resize(maxConfirms);
for (unsigned int i = 0; i < maxConfirms; i++) {
confAvg[i].resize(buckets.size());
curBlockConf[i].resize(buckets.size());
unconfTxs[i].resize(buckets.size());
}
oldUnconfTxs.resize(buckets.size());
curBlockTxCt.resize(buckets.size());
txCtAvg.resize(buckets.size());
curBlockVal.resize(buckets.size());
avg.resize(buckets.size());
}
// Zero out the data for the current block
void TxConfirmStats::ClearCurrent(unsigned int nBlockHeight)
{
for (unsigned int j = 0; j < buckets.size(); j++) {
oldUnconfTxs[j] += unconfTxs[nBlockHeight%unconfTxs.size()][j];
unconfTxs[nBlockHeight%unconfTxs.size()][j] = 0;
for (unsigned int i = 0; i < curBlockConf.size(); i++)
curBlockConf[i][j] = 0;
curBlockTxCt[j] = 0;
curBlockVal[j] = 0;
}
}
void TxConfirmStats::Record(int blocksToConfirm, double val)
{
// blocksToConfirm is 1-based
if (blocksToConfirm < 1)
return;
unsigned int bucketindex = bucketMap.lower_bound(val)->second;
for (size_t i = blocksToConfirm; i <= curBlockConf.size(); i++) {
curBlockConf[i - 1][bucketindex]++;
}
curBlockTxCt[bucketindex]++;
curBlockVal[bucketindex] += val;
}
void TxConfirmStats::UpdateMovingAverages()
{
for (unsigned int j = 0; j < buckets.size(); j++) {
for (unsigned int i = 0; i < confAvg.size(); i++)
confAvg[i][j] = confAvg[i][j] * decay + curBlockConf[i][j];
avg[j] = avg[j] * decay + curBlockVal[j];
txCtAvg[j] = txCtAvg[j] * decay + curBlockTxCt[j];
}
}
// returns -1 on error conditions
double TxConfirmStats::EstimateMedianVal(int confTarget, double sufficientTxVal,
double successBreakPoint, bool requireGreater,
unsigned int nBlockHeight)
{
// Counters for a bucket (or range of buckets)
double nConf = 0; // Number of tx's confirmed within the confTarget
double totalNum = 0; // Total number of tx's that were ever confirmed
int extraNum = 0; // Number of tx's still in mempool for confTarget or longer
int maxbucketindex = buckets.size() - 1;
// requireGreater means we are looking for the lowest fee/priority such that all higher
// values pass, so we start at maxbucketindex (highest fee) and look at successively
// smaller buckets until we reach failure. Otherwise, we are looking for the highest
// fee/priority such that all lower values fail, and we go in the opposite direction.
unsigned int startbucket = requireGreater ? maxbucketindex : 0;
int step = requireGreater ? -1 : 1;
// We'll combine buckets until we have enough samples.
// The near and far variables will define the range we've combined
// The best variables are the last range we saw which still had a high
// enough confirmation rate to count as success.
// The cur variables are the current range we're counting.
unsigned int curNearBucket = startbucket;
unsigned int bestNearBucket = startbucket;
unsigned int curFarBucket = startbucket;
unsigned int bestFarBucket = startbucket;
bool foundAnswer = false;
unsigned int bins = unconfTxs.size();
// Start counting from highest(default) or lowest fee/pri transactions
for (int bucket = startbucket; bucket >= 0 && bucket <= maxbucketindex; bucket += step) {
curFarBucket = bucket;
nConf += confAvg[confTarget - 1][bucket];
totalNum += txCtAvg[bucket];
for (unsigned int confct = confTarget; confct < GetMaxConfirms(); confct++)
extraNum += unconfTxs[(nBlockHeight - confct)%bins][bucket];
extraNum += oldUnconfTxs[bucket];
// If we have enough transaction data points in this range of buckets,
// we can test for success
// (Only count the confirmed data points, so that each confirmation count
// will be looking at the same amount of data and same bucket breaks)
if (totalNum >= sufficientTxVal / (1 - decay)) {
double curPct = nConf / (totalNum + extraNum);
// Check to see if we are no longer getting confirmed at the success rate
if (requireGreater && curPct < successBreakPoint)
break;
if (!requireGreater && curPct > successBreakPoint)
break;
// Otherwise update the cumulative stats, and the bucket variables
// and reset the counters
else {
foundAnswer = true;
nConf = 0;
totalNum = 0;
extraNum = 0;
bestNearBucket = curNearBucket;
bestFarBucket = curFarBucket;
curNearBucket = bucket + step;
}
}
}
double median = -1;
double txSum = 0;
// Calculate the "average" fee of the best bucket range that met success conditions
// Find the bucket with the median transaction and then report the average fee from that bucket
// This is a compromise between finding the median which we can't since we don't save all tx's
// and reporting the average which is less accurate
unsigned int minBucket = bestNearBucket < bestFarBucket ? bestNearBucket : bestFarBucket;
unsigned int maxBucket = bestNearBucket > bestFarBucket ? bestNearBucket : bestFarBucket;
for (unsigned int j = minBucket; j <= maxBucket; j++) {
txSum += txCtAvg[j];
}
if (foundAnswer && txSum != 0) {
txSum = txSum / 2;
for (unsigned int j = minBucket; j <= maxBucket; j++) {
if (txCtAvg[j] < txSum)
txSum -= txCtAvg[j];
else { // we're in the right bucket
median = avg[j] / txCtAvg[j];
break;
}
}
}
LogPrint("estimatefee", "%3d: For conf success %s %4.2f need %s %s: %12.5g from buckets %8g - %8g Cur Bucket stats %6.2f%% %8.1f/(%.1f+%d mempool)\n",
confTarget, requireGreater ? ">" : "<", successBreakPoint, dataTypeString,
requireGreater ? ">" : "<", median, buckets[minBucket], buckets[maxBucket],
100 * nConf / (totalNum + extraNum), nConf, totalNum, extraNum);
return median;
}
void TxConfirmStats::Write(CAutoFile& fileout)
{
fileout << decay;
fileout << buckets;
fileout << avg;
fileout << txCtAvg;
fileout << confAvg;
}
void TxConfirmStats::Read(CAutoFile& filein)
{
// Read data file into temporary variables and do some very basic sanity checking
std::vector<double> fileBuckets;
std::vector<double> fileAvg;
std::vector<std::vector<double> > fileConfAvg;
std::vector<double> fileTxCtAvg;
double fileDecay;
size_t maxConfirms;
size_t numBuckets;
filein >> fileDecay;
if (fileDecay <= 0 || fileDecay >= 1)
throw std::runtime_error("Corrupt estimates file. Decay must be between 0 and 1 (non-inclusive)");
filein >> fileBuckets;
numBuckets = fileBuckets.size();
if (numBuckets <= 1 || numBuckets > 1000)
throw std::runtime_error("Corrupt estimates file. Must have between 2 and 1000 fee/pri buckets");
filein >> fileAvg;
if (fileAvg.size() != numBuckets)
throw std::runtime_error("Corrupt estimates file. Mismatch in fee/pri average bucket count");
filein >> fileTxCtAvg;
if (fileTxCtAvg.size() != numBuckets)
throw std::runtime_error("Corrupt estimates file. Mismatch in tx count bucket count");
filein >> fileConfAvg;
maxConfirms = fileConfAvg.size();
if (maxConfirms <= 0 || maxConfirms > 6 * 24 * 7) // one week
throw std::runtime_error("Corrupt estimates file. Must maintain estimates for between 1 and 1008 (one week) confirms");
for (unsigned int i = 0; i < maxConfirms; i++) {
if (fileConfAvg[i].size() != numBuckets)
throw std::runtime_error("Corrupt estimates file. Mismatch in fee/pri conf average bucket count");
}
// Now that we've processed the entire fee estimate data file and not
// thrown any errors, we can copy it to our data structures
decay = fileDecay;
buckets = fileBuckets;
avg = fileAvg;
confAvg = fileConfAvg;
txCtAvg = fileTxCtAvg;
bucketMap.clear();
// Resize the current block variables which aren't stored in the data file
// to match the number of confirms and buckets
curBlockConf.resize(maxConfirms);
for (unsigned int i = 0; i < maxConfirms; i++) {
curBlockConf[i].resize(buckets.size());
}
curBlockTxCt.resize(buckets.size());
curBlockVal.resize(buckets.size());
unconfTxs.resize(maxConfirms);
for (unsigned int i = 0; i < maxConfirms; i++) {
unconfTxs[i].resize(buckets.size());
}
oldUnconfTxs.resize(buckets.size());
for (unsigned int i = 0; i < buckets.size(); i++)
bucketMap[buckets[i]] = i;
LogPrint("estimatefee", "Reading estimates: %u %s buckets counting confirms up to %u blocks\n",
numBuckets, dataTypeString, maxConfirms);
}
unsigned int TxConfirmStats::NewTx(unsigned int nBlockHeight, double val)
{
unsigned int bucketindex = bucketMap.lower_bound(val)->second;
unsigned int blockIndex = nBlockHeight % unconfTxs.size();
unconfTxs[blockIndex][bucketindex]++;
LogPrint("estimatefee", "adding to %s", dataTypeString);
return bucketindex;
}
void TxConfirmStats::removeTx(unsigned int entryHeight, unsigned int nBestSeenHeight, unsigned int bucketindex)
{
//nBestSeenHeight is not updated yet for the new block
int blocksAgo = nBestSeenHeight - entryHeight;
if (nBestSeenHeight == 0) // the BlockPolicyEstimator hasn't seen any blocks yet
blocksAgo = 0;
if (blocksAgo < 0) {
LogPrint("estimatefee", "Blockpolicy error, blocks ago is negative for mempool tx\n");
return; //This can't happen because we call this with our best seen height, no entries can have higher
}
if (blocksAgo >= (int)unconfTxs.size()) {
if (oldUnconfTxs[bucketindex] > 0)
oldUnconfTxs[bucketindex]--;
else
LogPrint("estimatefee", "Blockpolicy error, mempool tx removed from >25 blocks,bucketIndex=%u already\n",
bucketindex);
}
else {
unsigned int blockIndex = entryHeight % unconfTxs.size();
if (unconfTxs[blockIndex][bucketindex] > 0)
unconfTxs[blockIndex][bucketindex]--;
else
LogPrint("estimatefee", "Blockpolicy error, mempool tx removed from blockIndex=%u,bucketIndex=%u already\n",
blockIndex, bucketindex);
}
}
void CBlockPolicyEstimator::removeTx(uint256 hash)
{
std::map<uint256, TxStatsInfo>::iterator pos = mapMemPoolTxs.find(hash);
if (pos == mapMemPoolTxs.end()) {
LogPrint("estimatefee", "Blockpolicy error mempool tx %s not found for removeTx\n",
hash.ToString().c_str());
return;
}
TxConfirmStats *stats = pos->second.stats;
unsigned int entryHeight = pos->second.blockHeight;
unsigned int bucketIndex = pos->second.bucketIndex;
if (stats != NULL)
stats->removeTx(entryHeight, nBestSeenHeight, bucketIndex);
mapMemPoolTxs.erase(hash);
}
CBlockPolicyEstimator::CBlockPolicyEstimator(const CFeeRate& _minRelayFee)
: nBestSeenHeight(0)
{
minTrackedFee = _minRelayFee < CFeeRate(MIN_FEERATE) ? CFeeRate(MIN_FEERATE) : _minRelayFee;
std::vector<double> vfeelist;
for (double bucketBoundary = minTrackedFee.GetFeePerK(); bucketBoundary <= MAX_FEERATE; bucketBoundary *= FEE_SPACING) {
vfeelist.push_back(bucketBoundary);
}
vfeelist.push_back(INF_FEERATE);
feeStats.Initialize(vfeelist, MAX_BLOCK_CONFIRMS, DEFAULT_DECAY, "FeeRate");
minTrackedPriority = AllowFreeThreshold() < MIN_PRIORITY ? MIN_PRIORITY : AllowFreeThreshold();
std::vector<double> vprilist;
for (double bucketBoundary = minTrackedPriority; bucketBoundary <= MAX_PRIORITY; bucketBoundary *= PRI_SPACING) {
vprilist.push_back(bucketBoundary);
}
vprilist.push_back(INF_PRIORITY);
priStats.Initialize(vprilist, MAX_BLOCK_CONFIRMS, DEFAULT_DECAY, "Priority");
feeUnlikely = CFeeRate(0);
feeLikely = CFeeRate(INF_FEERATE);
priUnlikely = 0;
priLikely = INF_PRIORITY;
}
bool CBlockPolicyEstimator::isFeeDataPoint(const CFeeRate &fee, double pri)
{
if ((pri < minTrackedPriority && fee >= minTrackedFee) ||
(pri < priUnlikely && fee > feeLikely)) {
return true;
}
return false;
}
bool CBlockPolicyEstimator::isPriDataPoint(const CFeeRate &fee, double pri)
{
if ((fee < minTrackedFee && pri >= minTrackedPriority) ||
(fee < feeUnlikely && pri > priLikely)) {
return true;
}
return false;
}
void CBlockPolicyEstimator::processTransaction(const CTxMemPoolEntry& entry, bool fCurrentEstimate)
{
unsigned int txHeight = entry.GetHeight();
uint256 hash = entry.GetTx().GetHash();
if (mapMemPoolTxs[hash].stats != NULL) {
LogPrint("estimatefee", "Blockpolicy error mempool tx %s already being tracked\n",
hash.ToString().c_str());
return;
}
if (txHeight < nBestSeenHeight) {
// Ignore side chains and re-orgs; assuming they are random they don't
// affect the estimate. We'll potentially double count transactions in 1-block reorgs.
return;
}
// Only want to be updating estimates when our blockchain is synced,
// otherwise we'll miscalculate how many blocks its taking to get included.
if (!fCurrentEstimate)
return;
if (!entry.WasClearAtEntry()) {
// This transaction depends on other transactions in the mempool to
// be included in a block before it will be able to be included, so
// we shouldn't include it in our calculations
return;
}
// Fees are stored and reported as BTC-per-kb:
CFeeRate feeRate(entry.GetFee(), entry.GetTxSize());
// Want the priority of the tx at confirmation. However we don't know
// what that will be and its too hard to continue updating it
// so use starting priority as a proxy
double curPri = entry.GetPriority(txHeight);
mapMemPoolTxs[hash].blockHeight = txHeight;
LogPrint("estimatefee", "Blockpolicy mempool tx %s ", hash.ToString().substr(0,10));
// Record this as a priority estimate
if (entry.GetFee() == 0 || isPriDataPoint(feeRate, curPri)) {
mapMemPoolTxs[hash].stats = &priStats;
mapMemPoolTxs[hash].bucketIndex = priStats.NewTx(txHeight, curPri);
}
// Record this as a fee estimate
else if (isFeeDataPoint(feeRate, curPri)) {
mapMemPoolTxs[hash].stats = &feeStats;
mapMemPoolTxs[hash].bucketIndex = feeStats.NewTx(txHeight, (double)feeRate.GetFeePerK());
}
else {
LogPrint("estimatefee", "not adding");
}
LogPrint("estimatefee", "\n");
}
void CBlockPolicyEstimator::processBlockTx(unsigned int nBlockHeight, const CTxMemPoolEntry& entry)
{
if (!entry.WasClearAtEntry()) {
// This transaction depended on other transactions in the mempool to
// be included in a block before it was able to be included, so
// we shouldn't include it in our calculations
return;
}
// How many blocks did it take for miners to include this transaction?
// blocksToConfirm is 1-based, so a transaction included in the earliest
// possible block has confirmation count of 1
int blocksToConfirm = nBlockHeight - entry.GetHeight();
if (blocksToConfirm <= 0) {
// This can't happen because we don't process transactions from a block with a height
// lower than our greatest seen height
LogPrint("estimatefee", "Blockpolicy error Transaction had negative blocksToConfirm\n");
return;
}
// Fees are stored and reported as BTC-per-kb:
CFeeRate feeRate(entry.GetFee(), entry.GetTxSize());
// Want the priority of the tx at confirmation. The priority when it
// entered the mempool could easily be very small and change quickly
double curPri = entry.GetPriority(nBlockHeight);
// Record this as a priority estimate
if (entry.GetFee() == 0 || isPriDataPoint(feeRate, curPri)) {
priStats.Record(blocksToConfirm, curPri);
}
// Record this as a fee estimate
else if (isFeeDataPoint(feeRate, curPri)) {
feeStats.Record(blocksToConfirm, (double)feeRate.GetFeePerK());
}
}
void CBlockPolicyEstimator::processBlock(unsigned int nBlockHeight,
std::vector<CTxMemPoolEntry>& entries, bool fCurrentEstimate)
{
if (nBlockHeight <= nBestSeenHeight) {
// Ignore side chains and re-orgs; assuming they are random
// they don't affect the estimate.
// And if an attacker can re-org the chain at will, then
// you've got much bigger problems than "attacker can influence
// transaction fees."
return;
}
nBestSeenHeight = nBlockHeight;
// Only want to be updating estimates when our blockchain is synced,
// otherwise we'll miscalculate how many blocks its taking to get included.
if (!fCurrentEstimate)
return;
// Update the dynamic cutoffs
// a fee/priority is "likely" the reason your tx was included in a block if >85% of such tx's
// were confirmed in 2 blocks and is "unlikely" if <50% were confirmed in 10 blocks
LogPrint("estimatefee", "Blockpolicy recalculating dynamic cutoffs:\n");
priLikely = priStats.EstimateMedianVal(2, SUFFICIENT_PRITXS, MIN_SUCCESS_PCT, true, nBlockHeight);
if (priLikely == -1)
priLikely = INF_PRIORITY;
double feeLikelyEst = feeStats.EstimateMedianVal(2, SUFFICIENT_FEETXS, MIN_SUCCESS_PCT, true, nBlockHeight);
if (feeLikelyEst == -1)
feeLikely = CFeeRate(INF_FEERATE);
else
feeLikely = CFeeRate(feeLikelyEst);
priUnlikely = priStats.EstimateMedianVal(10, SUFFICIENT_PRITXS, UNLIKELY_PCT, false, nBlockHeight);
if (priUnlikely == -1)
priUnlikely = 0;
double feeUnlikelyEst = feeStats.EstimateMedianVal(10, SUFFICIENT_FEETXS, UNLIKELY_PCT, false, nBlockHeight);
if (feeUnlikelyEst == -1)
feeUnlikely = CFeeRate(0);
else
feeUnlikely = CFeeRate(feeUnlikelyEst);
// Clear the current block states
feeStats.ClearCurrent(nBlockHeight);
priStats.ClearCurrent(nBlockHeight);
// Repopulate the current block states
for (unsigned int i = 0; i < entries.size(); i++)
processBlockTx(nBlockHeight, entries[i]);
// Update all exponential averages with the current block states
feeStats.UpdateMovingAverages();
priStats.UpdateMovingAverages();
LogPrint("estimatefee", "Blockpolicy after updating estimates for %u confirmed entries, new mempool map size %u\n",
entries.size(), mapMemPoolTxs.size());
}
CFeeRate CBlockPolicyEstimator::estimateFee(int confTarget)
{
// Return failure if trying to analyze a target we're not tracking
if (confTarget <= 0 || (unsigned int)confTarget > feeStats.GetMaxConfirms())
return CFeeRate(0);
double median = feeStats.EstimateMedianVal(confTarget, SUFFICIENT_FEETXS, MIN_SUCCESS_PCT, true, nBestSeenHeight);
if (median < 0)
return CFeeRate(0);
return CFeeRate(median);
}
CFeeRate CBlockPolicyEstimator::estimateSmartFee(int confTarget, int *answerFoundAtTarget, const CTxMemPool& pool)
{
if (answerFoundAtTarget)
*answerFoundAtTarget = confTarget;
// Return failure if trying to analyze a target we're not tracking
if (confTarget <= 0 || (unsigned int)confTarget > feeStats.GetMaxConfirms())
return CFeeRate(0);
double median = -1;
while (median < 0 && (unsigned int)confTarget <= feeStats.GetMaxConfirms()) {
median = feeStats.EstimateMedianVal(confTarget++, SUFFICIENT_FEETXS, MIN_SUCCESS_PCT, true, nBestSeenHeight);
}
if (answerFoundAtTarget)
*answerFoundAtTarget = confTarget - 1;
// If mempool is limiting txs , return at least the min fee from the mempool
CAmount minPoolFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFeePerK();
if (minPoolFee > 0 && minPoolFee > median)
return CFeeRate(minPoolFee);
if (median < 0)
return CFeeRate(0);
return CFeeRate(median);
}
double CBlockPolicyEstimator::estimatePriority(int confTarget)
{
// Return failure if trying to analyze a target we're not tracking
if (confTarget <= 0 || (unsigned int)confTarget > priStats.GetMaxConfirms())
return -1;
return priStats.EstimateMedianVal(confTarget, SUFFICIENT_PRITXS, MIN_SUCCESS_PCT, true, nBestSeenHeight);
}
double CBlockPolicyEstimator::estimateSmartPriority(int confTarget, int *answerFoundAtTarget, const CTxMemPool& pool)
{
if (answerFoundAtTarget)
*answerFoundAtTarget = confTarget;
// Return failure if trying to analyze a target we're not tracking
if (confTarget <= 0 || (unsigned int)confTarget > priStats.GetMaxConfirms())
return -1;
// If mempool is limiting txs, no priority txs are allowed
CAmount minPoolFee = pool.GetMinFee(GetArg("-maxmempool", DEFAULT_MAX_MEMPOOL_SIZE) * 1000000).GetFeePerK();
if (minPoolFee > 0)
return INF_PRIORITY;
double median = -1;
while (median < 0 && (unsigned int)confTarget <= priStats.GetMaxConfirms()) {
median = priStats.EstimateMedianVal(confTarget++, SUFFICIENT_PRITXS, MIN_SUCCESS_PCT, true, nBestSeenHeight);
}
if (answerFoundAtTarget)
*answerFoundAtTarget = confTarget - 1;
return median;
}
void CBlockPolicyEstimator::Write(CAutoFile& fileout)
{
fileout << nBestSeenHeight;
feeStats.Write(fileout);
priStats.Write(fileout);
}
void CBlockPolicyEstimator::Read(CAutoFile& filein)
{
int nFileBestSeenHeight;
filein >> nFileBestSeenHeight;
feeStats.Read(filein);
priStats.Read(filein);
nBestSeenHeight = nFileBestSeenHeight;
}
FeeFilterRounder::FeeFilterRounder(const CFeeRate& minIncrementalFee)
{
CAmount minFeeLimit = minIncrementalFee.GetFeePerK() / 2;
feeset.insert(0);
for (double bucketBoundary = minFeeLimit; bucketBoundary <= MAX_FEERATE; bucketBoundary *= FEE_SPACING) {
feeset.insert(bucketBoundary);
}
}
CAmount FeeFilterRounder::round(CAmount currentMinFee)
{
std::set<double>::iterator it = feeset.lower_bound(currentMinFee);
if ((it != feeset.begin() && insecure_rand.rand32() % 3 != 0) || it == feeset.end()) {
it--;
}
return *it;
}
|