aboutsummaryrefslogtreecommitdiff
path: root/src/node/blockstorage.cpp
blob: 7691c9a5ce33234d0d4824edabf4cbd2af3c14b6 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
// Copyright (c) 2011-2021 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <node/blockstorage.h>

#include <chain.h>
#include <chainparams.h>
#include <clientversion.h>
#include <consensus/validation.h>
#include <flatfile.h>
#include <fs.h>
#include <hash.h>
#include <pow.h>
#include <reverse_iterator.h>
#include <shutdown.h>
#include <signet.h>
#include <streams.h>
#include <undo.h>
#include <util/syscall_sandbox.h>
#include <util/system.h>
#include <validation.h>

namespace node {
std::atomic_bool fImporting(false);
std::atomic_bool fReindex(false);
bool fHavePruned = false;
bool fPruneMode = false;
uint64_t nPruneTarget = 0;

static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly = false);
static FlatFileSeq BlockFileSeq();
static FlatFileSeq UndoFileSeq();

CBlockIndex* BlockManager::LookupBlockIndex(const uint256& hash) const
{
    AssertLockHeld(cs_main);
    BlockMap::const_iterator it = m_block_index.find(hash);
    return it == m_block_index.end() ? nullptr : it->second;
}

CBlockIndex* BlockManager::AddToBlockIndex(const CBlockHeader& block)
{
    AssertLockHeld(cs_main);

    // Check for duplicate
    uint256 hash = block.GetHash();
    BlockMap::iterator it = m_block_index.find(hash);
    if (it != m_block_index.end()) {
        return it->second;
    }

    // Construct new block index object
    CBlockIndex* pindexNew = new CBlockIndex(block);
    // We assign the sequence id to blocks only when the full data is available,
    // to avoid miners withholding blocks but broadcasting headers, to get a
    // competitive advantage.
    pindexNew->nSequenceId = 0;
    BlockMap::iterator mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
    pindexNew->phashBlock = &((*mi).first);
    BlockMap::iterator miPrev = m_block_index.find(block.hashPrevBlock);
    if (miPrev != m_block_index.end()) {
        pindexNew->pprev = (*miPrev).second;
        pindexNew->nHeight = pindexNew->pprev->nHeight + 1;
        pindexNew->BuildSkip();
    }
    pindexNew->nTimeMax = (pindexNew->pprev ? std::max(pindexNew->pprev->nTimeMax, pindexNew->nTime) : pindexNew->nTime);
    pindexNew->nChainWork = (pindexNew->pprev ? pindexNew->pprev->nChainWork : 0) + GetBlockProof(*pindexNew);
    pindexNew->RaiseValidity(BLOCK_VALID_TREE);
    if (pindexBestHeader == nullptr || pindexBestHeader->nChainWork < pindexNew->nChainWork)
        pindexBestHeader = pindexNew;

    m_dirty_blockindex.insert(pindexNew);

    return pindexNew;
}

void BlockManager::PruneOneBlockFile(const int fileNumber)
{
    AssertLockHeld(cs_main);
    LOCK(cs_LastBlockFile);

    for (const auto& entry : m_block_index) {
        CBlockIndex* pindex = entry.second;
        if (pindex->nFile == fileNumber) {
            pindex->nStatus &= ~BLOCK_HAVE_DATA;
            pindex->nStatus &= ~BLOCK_HAVE_UNDO;
            pindex->nFile = 0;
            pindex->nDataPos = 0;
            pindex->nUndoPos = 0;
            m_dirty_blockindex.insert(pindex);

            // Prune from m_blocks_unlinked -- any block we prune would have
            // to be downloaded again in order to consider its chain, at which
            // point it would be considered as a candidate for
            // m_blocks_unlinked or setBlockIndexCandidates.
            auto range = m_blocks_unlinked.equal_range(pindex->pprev);
            while (range.first != range.second) {
                std::multimap<CBlockIndex*, CBlockIndex*>::iterator _it = range.first;
                range.first++;
                if (_it->second == pindex) {
                    m_blocks_unlinked.erase(_it);
                }
            }
        }
    }

    m_blockfile_info[fileNumber].SetNull();
    m_dirty_fileinfo.insert(fileNumber);
}

void BlockManager::FindFilesToPruneManual(std::set<int>& setFilesToPrune, int nManualPruneHeight, int chain_tip_height)
{
    assert(fPruneMode && nManualPruneHeight > 0);

    LOCK2(cs_main, cs_LastBlockFile);
    if (chain_tip_height < 0) {
        return;
    }

    // last block to prune is the lesser of (user-specified height, MIN_BLOCKS_TO_KEEP from the tip)
    unsigned int nLastBlockWeCanPrune = std::min((unsigned)nManualPruneHeight, chain_tip_height - MIN_BLOCKS_TO_KEEP);
    int count = 0;
    for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) {
        if (m_blockfile_info[fileNumber].nSize == 0 || m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
            continue;
        }
        PruneOneBlockFile(fileNumber);
        setFilesToPrune.insert(fileNumber);
        count++;
    }
    LogPrintf("Prune (Manual): prune_height=%d removed %d blk/rev pairs\n", nLastBlockWeCanPrune, count);
}

void BlockManager::FindFilesToPrune(std::set<int>& setFilesToPrune, uint64_t nPruneAfterHeight, int chain_tip_height, int prune_height, bool is_ibd)
{
    LOCK2(cs_main, cs_LastBlockFile);
    if (chain_tip_height < 0 || nPruneTarget == 0) {
        return;
    }
    if ((uint64_t)chain_tip_height <= nPruneAfterHeight) {
        return;
    }

    unsigned int nLastBlockWeCanPrune{(unsigned)std::min(prune_height, chain_tip_height - static_cast<int>(MIN_BLOCKS_TO_KEEP))};
    uint64_t nCurrentUsage = CalculateCurrentUsage();
    // We don't check to prune until after we've allocated new space for files
    // So we should leave a buffer under our target to account for another allocation
    // before the next pruning.
    uint64_t nBuffer = BLOCKFILE_CHUNK_SIZE + UNDOFILE_CHUNK_SIZE;
    uint64_t nBytesToPrune;
    int count = 0;

    if (nCurrentUsage + nBuffer >= nPruneTarget) {
        // On a prune event, the chainstate DB is flushed.
        // To avoid excessive prune events negating the benefit of high dbcache
        // values, we should not prune too rapidly.
        // So when pruning in IBD, increase the buffer a bit to avoid a re-prune too soon.
        if (is_ibd) {
            // Since this is only relevant during IBD, we use a fixed 10%
            nBuffer += nPruneTarget / 10;
        }

        for (int fileNumber = 0; fileNumber < m_last_blockfile; fileNumber++) {
            nBytesToPrune = m_blockfile_info[fileNumber].nSize + m_blockfile_info[fileNumber].nUndoSize;

            if (m_blockfile_info[fileNumber].nSize == 0) {
                continue;
            }

            if (nCurrentUsage + nBuffer < nPruneTarget) { // are we below our target?
                break;
            }

            // don't prune files that could have a block within MIN_BLOCKS_TO_KEEP of the main chain's tip but keep scanning
            if (m_blockfile_info[fileNumber].nHeightLast > nLastBlockWeCanPrune) {
                continue;
            }

            PruneOneBlockFile(fileNumber);
            // Queue up the files for removal
            setFilesToPrune.insert(fileNumber);
            nCurrentUsage -= nBytesToPrune;
            count++;
        }
    }

    LogPrint(BCLog::PRUNE, "Prune: target=%dMiB actual=%dMiB diff=%dMiB max_prune_height=%d removed %d blk/rev pairs\n",
           nPruneTarget/1024/1024, nCurrentUsage/1024/1024,
           ((int64_t)nPruneTarget - (int64_t)nCurrentUsage)/1024/1024,
           nLastBlockWeCanPrune, count);
}

CBlockIndex* BlockManager::InsertBlockIndex(const uint256& hash)
{
    AssertLockHeld(cs_main);

    if (hash.IsNull()) {
        return nullptr;
    }

    // Return existing
    BlockMap::iterator mi = m_block_index.find(hash);
    if (mi != m_block_index.end()) {
        return (*mi).second;
    }

    // Create new
    CBlockIndex* pindexNew = new CBlockIndex();
    mi = m_block_index.insert(std::make_pair(hash, pindexNew)).first;
    pindexNew->phashBlock = &((*mi).first);

    return pindexNew;
}

bool BlockManager::LoadBlockIndex(
    const Consensus::Params& consensus_params,
    ChainstateManager& chainman)
{
    if (!m_block_tree_db->LoadBlockIndexGuts(consensus_params, [this](const uint256& hash) EXCLUSIVE_LOCKS_REQUIRED(cs_main) { return this->InsertBlockIndex(hash); })) {
        return false;
    }

    // Calculate nChainWork
    std::vector<std::pair<int, CBlockIndex*>> vSortedByHeight;
    vSortedByHeight.reserve(m_block_index.size());
    for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
        CBlockIndex* pindex = item.second;
        vSortedByHeight.push_back(std::make_pair(pindex->nHeight, pindex));
    }
    sort(vSortedByHeight.begin(), vSortedByHeight.end());

    // Find start of assumed-valid region.
    int first_assumed_valid_height = std::numeric_limits<int>::max();

    for (const auto& [height, block] : vSortedByHeight) {
        if (block->IsAssumedValid()) {
            auto chainstates = chainman.GetAll();

            // If we encounter an assumed-valid block index entry, ensure that we have
            // one chainstate that tolerates assumed-valid entries and another that does
            // not (i.e. the background validation chainstate), since assumed-valid
            // entries should always be pending validation by a fully-validated chainstate.
            auto any_chain = [&](auto fnc) { return std::any_of(chainstates.cbegin(), chainstates.cend(), fnc); };
            assert(any_chain([](auto chainstate) { return chainstate->reliesOnAssumedValid(); }));
            assert(any_chain([](auto chainstate) { return !chainstate->reliesOnAssumedValid(); }));

            first_assumed_valid_height = height;
            break;
        }
    }

    for (const std::pair<int, CBlockIndex*>& item : vSortedByHeight) {
        if (ShutdownRequested()) return false;
        CBlockIndex* pindex = item.second;
        pindex->nChainWork = (pindex->pprev ? pindex->pprev->nChainWork : 0) + GetBlockProof(*pindex);
        pindex->nTimeMax = (pindex->pprev ? std::max(pindex->pprev->nTimeMax, pindex->nTime) : pindex->nTime);

        // We can link the chain of blocks for which we've received transactions at some point, or
        // blocks that are assumed-valid on the basis of snapshot load (see
        // PopulateAndValidateSnapshot()).
        // Pruned nodes may have deleted the block.
        if (pindex->nTx > 0) {
            if (pindex->pprev) {
                if (pindex->pprev->nChainTx > 0) {
                    pindex->nChainTx = pindex->pprev->nChainTx + pindex->nTx;
                } else {
                    pindex->nChainTx = 0;
                    m_blocks_unlinked.insert(std::make_pair(pindex->pprev, pindex));
                }
            } else {
                pindex->nChainTx = pindex->nTx;
            }
        }
        if (!(pindex->nStatus & BLOCK_FAILED_MASK) && pindex->pprev && (pindex->pprev->nStatus & BLOCK_FAILED_MASK)) {
            pindex->nStatus |= BLOCK_FAILED_CHILD;
            m_dirty_blockindex.insert(pindex);
        }
        if (pindex->IsAssumedValid() ||
                (pindex->IsValid(BLOCK_VALID_TRANSACTIONS) &&
                 (pindex->HaveTxsDownloaded() || pindex->pprev == nullptr))) {

            // Fill each chainstate's block candidate set. Only add assumed-valid
            // blocks to the tip candidate set if the chainstate is allowed to rely on
            // assumed-valid blocks.
            //
            // If all setBlockIndexCandidates contained the assumed-valid blocks, the
            // background chainstate's ActivateBestChain() call would add assumed-valid
            // blocks to the chain (based on how FindMostWorkChain() works). Obviously
            // we don't want this since the purpose of the background validation chain
            // is to validate assued-valid blocks.
            //
            // Note: This is considering all blocks whose height is greater or equal to
            // the first assumed-valid block to be assumed-valid blocks, and excluding
            // them from the background chainstate's setBlockIndexCandidates set. This
            // does mean that some blocks which are not technically assumed-valid
            // (later blocks on a fork beginning before the first assumed-valid block)
            // might not get added to the the background chainstate, but this is ok,
            // because they will still be attached to the active chainstate if they
            // actually contain more work.
            //
            // Instead of this height-based approach, an earlier attempt was made at
            // detecting "holistically" whether the block index under consideration
            // relied on an assumed-valid ancestor, but this proved to be too slow to
            // be practical.
            for (CChainState* chainstate : chainman.GetAll()) {
                if (chainstate->reliesOnAssumedValid() ||
                        pindex->nHeight < first_assumed_valid_height) {
                    chainstate->setBlockIndexCandidates.insert(pindex);
                }
            }
        }
        if (pindex->nStatus & BLOCK_FAILED_MASK && (!chainman.m_best_invalid || pindex->nChainWork > chainman.m_best_invalid->nChainWork)) {
            chainman.m_best_invalid = pindex;
        }
        if (pindex->pprev) {
            pindex->BuildSkip();
        }
        if (pindex->IsValid(BLOCK_VALID_TREE) && (pindexBestHeader == nullptr || CBlockIndexWorkComparator()(pindexBestHeader, pindex)))
            pindexBestHeader = pindex;
    }

    return true;
}

void BlockManager::Unload()
{
    m_blocks_unlinked.clear();

    for (const BlockMap::value_type& entry : m_block_index) {
        delete entry.second;
    }

    m_block_index.clear();

    m_blockfile_info.clear();
    m_last_blockfile = 0;
    m_dirty_blockindex.clear();
    m_dirty_fileinfo.clear();
}

bool BlockManager::WriteBlockIndexDB()
{
    AssertLockHeld(::cs_main);
    std::vector<std::pair<int, const CBlockFileInfo*>> vFiles;
    vFiles.reserve(m_dirty_fileinfo.size());
    for (std::set<int>::iterator it = m_dirty_fileinfo.begin(); it != m_dirty_fileinfo.end();) {
        vFiles.push_back(std::make_pair(*it, &m_blockfile_info[*it]));
        m_dirty_fileinfo.erase(it++);
    }
    std::vector<const CBlockIndex*> vBlocks;
    vBlocks.reserve(m_dirty_blockindex.size());
    for (std::set<CBlockIndex*>::iterator it = m_dirty_blockindex.begin(); it != m_dirty_blockindex.end();) {
        vBlocks.push_back(*it);
        m_dirty_blockindex.erase(it++);
    }
    if (!m_block_tree_db->WriteBatchSync(vFiles, m_last_blockfile, vBlocks)) {
        return false;
    }
    return true;
}

bool BlockManager::LoadBlockIndexDB(ChainstateManager& chainman)
{
    if (!LoadBlockIndex(::Params().GetConsensus(), chainman)) {
        return false;
    }

    // Load block file info
    m_block_tree_db->ReadLastBlockFile(m_last_blockfile);
    m_blockfile_info.resize(m_last_blockfile + 1);
    LogPrintf("%s: last block file = %i\n", __func__, m_last_blockfile);
    for (int nFile = 0; nFile <= m_last_blockfile; nFile++) {
        m_block_tree_db->ReadBlockFileInfo(nFile, m_blockfile_info[nFile]);
    }
    LogPrintf("%s: last block file info: %s\n", __func__, m_blockfile_info[m_last_blockfile].ToString());
    for (int nFile = m_last_blockfile + 1; true; nFile++) {
        CBlockFileInfo info;
        if (m_block_tree_db->ReadBlockFileInfo(nFile, info)) {
            m_blockfile_info.push_back(info);
        } else {
            break;
        }
    }

    // Check presence of blk files
    LogPrintf("Checking all blk files are present...\n");
    std::set<int> setBlkDataFiles;
    for (const std::pair<const uint256, CBlockIndex*>& item : m_block_index) {
        CBlockIndex* pindex = item.second;
        if (pindex->nStatus & BLOCK_HAVE_DATA) {
            setBlkDataFiles.insert(pindex->nFile);
        }
    }
    for (std::set<int>::iterator it = setBlkDataFiles.begin(); it != setBlkDataFiles.end(); it++) {
        FlatFilePos pos(*it, 0);
        if (CAutoFile(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION).IsNull()) {
            return false;
        }
    }

    // Check whether we have ever pruned block & undo files
    m_block_tree_db->ReadFlag("prunedblockfiles", fHavePruned);
    if (fHavePruned) {
        LogPrintf("LoadBlockIndexDB(): Block files have previously been pruned\n");
    }

    // Check whether we need to continue reindexing
    bool fReindexing = false;
    m_block_tree_db->ReadReindexing(fReindexing);
    if (fReindexing) fReindex = true;

    return true;
}

CBlockIndex* BlockManager::GetLastCheckpoint(const CCheckpointData& data)
{
    const MapCheckpoints& checkpoints = data.mapCheckpoints;

    for (const MapCheckpoints::value_type& i : reverse_iterate(checkpoints)) {
        const uint256& hash = i.second;
        CBlockIndex* pindex = LookupBlockIndex(hash);
        if (pindex) {
            return pindex;
        }
    }
    return nullptr;
}

bool IsBlockPruned(const CBlockIndex* pblockindex)
{
    AssertLockHeld(::cs_main);
    return (fHavePruned && !(pblockindex->nStatus & BLOCK_HAVE_DATA) && pblockindex->nTx > 0);
}

// If we're using -prune with -reindex, then delete block files that will be ignored by the
// reindex.  Since reindexing works by starting at block file 0 and looping until a blockfile
// is missing, do the same here to delete any later block files after a gap.  Also delete all
// rev files since they'll be rewritten by the reindex anyway.  This ensures that m_blockfile_info
// is in sync with what's actually on disk by the time we start downloading, so that pruning
// works correctly.
void CleanupBlockRevFiles()
{
    std::map<std::string, fs::path> mapBlockFiles;

    // Glob all blk?????.dat and rev?????.dat files from the blocks directory.
    // Remove the rev files immediately and insert the blk file paths into an
    // ordered map keyed by block file index.
    LogPrintf("Removing unusable blk?????.dat and rev?????.dat files for -reindex with -prune\n");
    fs::path blocksdir = gArgs.GetBlocksDirPath();
    for (fs::directory_iterator it(blocksdir); it != fs::directory_iterator(); it++) {
        const std::string path = fs::PathToString(it->path().filename());
        if (fs::is_regular_file(*it) &&
            path.length() == 12 &&
            path.substr(8,4) == ".dat")
        {
            if (path.substr(0, 3) == "blk") {
                mapBlockFiles[path.substr(3, 5)] = it->path();
            } else if (path.substr(0, 3) == "rev") {
                remove(it->path());
            }
        }
    }

    // Remove all block files that aren't part of a contiguous set starting at
    // zero by walking the ordered map (keys are block file indices) by
    // keeping a separate counter.  Once we hit a gap (or if 0 doesn't exist)
    // start removing block files.
    int nContigCounter = 0;
    for (const std::pair<const std::string, fs::path>& item : mapBlockFiles) {
        if (LocaleIndependentAtoi<int>(item.first) == nContigCounter) {
            nContigCounter++;
            continue;
        }
        remove(item.second);
    }
}

CBlockFileInfo* BlockManager::GetBlockFileInfo(size_t n)
{
    LOCK(cs_LastBlockFile);

    return &m_blockfile_info.at(n);
}

static bool UndoWriteToDisk(const CBlockUndo& blockundo, FlatFilePos& pos, const uint256& hashBlock, const CMessageHeader::MessageStartChars& messageStart)
{
    // Open history file to append
    CAutoFile fileout(OpenUndoFile(pos), SER_DISK, CLIENT_VERSION);
    if (fileout.IsNull()) {
        return error("%s: OpenUndoFile failed", __func__);
    }

    // Write index header
    unsigned int nSize = GetSerializeSize(blockundo, fileout.GetVersion());
    fileout << messageStart << nSize;

    // Write undo data
    long fileOutPos = ftell(fileout.Get());
    if (fileOutPos < 0) {
        return error("%s: ftell failed", __func__);
    }
    pos.nPos = (unsigned int)fileOutPos;
    fileout << blockundo;

    // calculate & write checksum
    CHashWriter hasher(SER_GETHASH, PROTOCOL_VERSION);
    hasher << hashBlock;
    hasher << blockundo;
    fileout << hasher.GetHash();

    return true;
}

bool UndoReadFromDisk(CBlockUndo& blockundo, const CBlockIndex* pindex)
{
    const FlatFilePos pos{WITH_LOCK(::cs_main, return pindex->GetUndoPos())};

    if (pos.IsNull()) {
        return error("%s: no undo data available", __func__);
    }

    // Open history file to read
    CAutoFile filein(OpenUndoFile(pos, true), SER_DISK, CLIENT_VERSION);
    if (filein.IsNull()) {
        return error("%s: OpenUndoFile failed", __func__);
    }

    // Read block
    uint256 hashChecksum;
    CHashVerifier<CAutoFile> verifier(&filein); // We need a CHashVerifier as reserializing may lose data
    try {
        verifier << pindex->pprev->GetBlockHash();
        verifier >> blockundo;
        filein >> hashChecksum;
    } catch (const std::exception& e) {
        return error("%s: Deserialize or I/O error - %s", __func__, e.what());
    }

    // Verify checksum
    if (hashChecksum != verifier.GetHash()) {
        return error("%s: Checksum mismatch", __func__);
    }

    return true;
}

void BlockManager::FlushUndoFile(int block_file, bool finalize)
{
    FlatFilePos undo_pos_old(block_file, m_blockfile_info[block_file].nUndoSize);
    if (!UndoFileSeq().Flush(undo_pos_old, finalize)) {
        AbortNode("Flushing undo file to disk failed. This is likely the result of an I/O error.");
    }
}

void BlockManager::FlushBlockFile(bool fFinalize, bool finalize_undo)
{
    LOCK(cs_LastBlockFile);
    FlatFilePos block_pos_old(m_last_blockfile, m_blockfile_info[m_last_blockfile].nSize);
    if (!BlockFileSeq().Flush(block_pos_old, fFinalize)) {
        AbortNode("Flushing block file to disk failed. This is likely the result of an I/O error.");
    }
    // we do not always flush the undo file, as the chain tip may be lagging behind the incoming blocks,
    // e.g. during IBD or a sync after a node going offline
    if (!fFinalize || finalize_undo) FlushUndoFile(m_last_blockfile, finalize_undo);
}

uint64_t BlockManager::CalculateCurrentUsage()
{
    LOCK(cs_LastBlockFile);

    uint64_t retval = 0;
    for (const CBlockFileInfo& file : m_blockfile_info) {
        retval += file.nSize + file.nUndoSize;
    }
    return retval;
}

void UnlinkPrunedFiles(const std::set<int>& setFilesToPrune)
{
    for (std::set<int>::iterator it = setFilesToPrune.begin(); it != setFilesToPrune.end(); ++it) {
        FlatFilePos pos(*it, 0);
        fs::remove(BlockFileSeq().FileName(pos));
        fs::remove(UndoFileSeq().FileName(pos));
        LogPrint(BCLog::BLOCKSTORE, "Prune: %s deleted blk/rev (%05u)\n", __func__, *it);
    }
}

static FlatFileSeq BlockFileSeq()
{
    return FlatFileSeq(gArgs.GetBlocksDirPath(), "blk", gArgs.GetBoolArg("-fastprune", false) ? 0x4000 /* 16kb */ : BLOCKFILE_CHUNK_SIZE);
}

static FlatFileSeq UndoFileSeq()
{
    return FlatFileSeq(gArgs.GetBlocksDirPath(), "rev", UNDOFILE_CHUNK_SIZE);
}

FILE* OpenBlockFile(const FlatFilePos& pos, bool fReadOnly)
{
    return BlockFileSeq().Open(pos, fReadOnly);
}

/** Open an undo file (rev?????.dat) */
static FILE* OpenUndoFile(const FlatFilePos& pos, bool fReadOnly)
{
    return UndoFileSeq().Open(pos, fReadOnly);
}

fs::path GetBlockPosFilename(const FlatFilePos& pos)
{
    return BlockFileSeq().FileName(pos);
}

bool BlockManager::FindBlockPos(FlatFilePos& pos, unsigned int nAddSize, unsigned int nHeight, CChain& active_chain, uint64_t nTime, bool fKnown)
{
    LOCK(cs_LastBlockFile);

    unsigned int nFile = fKnown ? pos.nFile : m_last_blockfile;
    if (m_blockfile_info.size() <= nFile) {
        m_blockfile_info.resize(nFile + 1);
    }

    bool finalize_undo = false;
    if (!fKnown) {
        while (m_blockfile_info[nFile].nSize + nAddSize >= (gArgs.GetBoolArg("-fastprune", false) ? 0x10000 /* 64kb */ : MAX_BLOCKFILE_SIZE)) {
            // when the undo file is keeping up with the block file, we want to flush it explicitly
            // when it is lagging behind (more blocks arrive than are being connected), we let the
            // undo block write case handle it
            finalize_undo = (m_blockfile_info[nFile].nHeightLast == (unsigned int)active_chain.Tip()->nHeight);
            nFile++;
            if (m_blockfile_info.size() <= nFile) {
                m_blockfile_info.resize(nFile + 1);
            }
        }
        pos.nFile = nFile;
        pos.nPos = m_blockfile_info[nFile].nSize;
    }

    if ((int)nFile != m_last_blockfile) {
        if (!fKnown) {
            LogPrint(BCLog::BLOCKSTORE, "Leaving block file %i: %s\n", m_last_blockfile, m_blockfile_info[m_last_blockfile].ToString());
        }
        FlushBlockFile(!fKnown, finalize_undo);
        m_last_blockfile = nFile;
    }

    m_blockfile_info[nFile].AddBlock(nHeight, nTime);
    if (fKnown) {
        m_blockfile_info[nFile].nSize = std::max(pos.nPos + nAddSize, m_blockfile_info[nFile].nSize);
    } else {
        m_blockfile_info[nFile].nSize += nAddSize;
    }

    if (!fKnown) {
        bool out_of_space;
        size_t bytes_allocated = BlockFileSeq().Allocate(pos, nAddSize, out_of_space);
        if (out_of_space) {
            return AbortNode("Disk space is too low!", _("Disk space is too low!"));
        }
        if (bytes_allocated != 0 && fPruneMode) {
            m_check_for_pruning = true;
        }
    }

    m_dirty_fileinfo.insert(nFile);
    return true;
}

bool BlockManager::FindUndoPos(BlockValidationState& state, int nFile, FlatFilePos& pos, unsigned int nAddSize)
{
    pos.nFile = nFile;

    LOCK(cs_LastBlockFile);

    pos.nPos = m_blockfile_info[nFile].nUndoSize;
    m_blockfile_info[nFile].nUndoSize += nAddSize;
    m_dirty_fileinfo.insert(nFile);

    bool out_of_space;
    size_t bytes_allocated = UndoFileSeq().Allocate(pos, nAddSize, out_of_space);
    if (out_of_space) {
        return AbortNode(state, "Disk space is too low!", _("Disk space is too low!"));
    }
    if (bytes_allocated != 0 && fPruneMode) {
        m_check_for_pruning = true;
    }

    return true;
}

static bool WriteBlockToDisk(const CBlock& block, FlatFilePos& pos, const CMessageHeader::MessageStartChars& messageStart)
{
    // Open history file to append
    CAutoFile fileout(OpenBlockFile(pos), SER_DISK, CLIENT_VERSION);
    if (fileout.IsNull()) {
        return error("WriteBlockToDisk: OpenBlockFile failed");
    }

    // Write index header
    unsigned int nSize = GetSerializeSize(block, fileout.GetVersion());
    fileout << messageStart << nSize;

    // Write block
    long fileOutPos = ftell(fileout.Get());
    if (fileOutPos < 0) {
        return error("WriteBlockToDisk: ftell failed");
    }
    pos.nPos = (unsigned int)fileOutPos;
    fileout << block;

    return true;
}

bool BlockManager::WriteUndoDataForBlock(const CBlockUndo& blockundo, BlockValidationState& state, CBlockIndex* pindex, const CChainParams& chainparams)
{
    AssertLockHeld(::cs_main);
    // Write undo information to disk
    if (pindex->GetUndoPos().IsNull()) {
        FlatFilePos _pos;
        if (!FindUndoPos(state, pindex->nFile, _pos, ::GetSerializeSize(blockundo, CLIENT_VERSION) + 40)) {
            return error("ConnectBlock(): FindUndoPos failed");
        }
        if (!UndoWriteToDisk(blockundo, _pos, pindex->pprev->GetBlockHash(), chainparams.MessageStart())) {
            return AbortNode(state, "Failed to write undo data");
        }
        // rev files are written in block height order, whereas blk files are written as blocks come in (often out of order)
        // we want to flush the rev (undo) file once we've written the last block, which is indicated by the last height
        // in the block file info as below; note that this does not catch the case where the undo writes are keeping up
        // with the block writes (usually when a synced up node is getting newly mined blocks) -- this case is caught in
        // the FindBlockPos function
        if (_pos.nFile < m_last_blockfile && static_cast<uint32_t>(pindex->nHeight) == m_blockfile_info[_pos.nFile].nHeightLast) {
            FlushUndoFile(_pos.nFile, true);
        }

        // update nUndoPos in block index
        pindex->nUndoPos = _pos.nPos;
        pindex->nStatus |= BLOCK_HAVE_UNDO;
        m_dirty_blockindex.insert(pindex);
    }

    return true;
}

bool ReadBlockFromDisk(CBlock& block, const FlatFilePos& pos, const Consensus::Params& consensusParams)
{
    block.SetNull();

    // Open history file to read
    CAutoFile filein(OpenBlockFile(pos, true), SER_DISK, CLIENT_VERSION);
    if (filein.IsNull()) {
        return error("ReadBlockFromDisk: OpenBlockFile failed for %s", pos.ToString());
    }

    // Read block
    try {
        filein >> block;
    } catch (const std::exception& e) {
        return error("%s: Deserialize or I/O error - %s at %s", __func__, e.what(), pos.ToString());
    }

    // Check the header
    if (!CheckProofOfWork(block.GetHash(), block.nBits, consensusParams)) {
        return error("ReadBlockFromDisk: Errors in block header at %s", pos.ToString());
    }

    // Signet only: check block solution
    if (consensusParams.signet_blocks && !CheckSignetBlockSolution(block, consensusParams)) {
        return error("ReadBlockFromDisk: Errors in block solution at %s", pos.ToString());
    }

    return true;
}

bool ReadBlockFromDisk(CBlock& block, const CBlockIndex* pindex, const Consensus::Params& consensusParams)
{
    const FlatFilePos block_pos{WITH_LOCK(cs_main, return pindex->GetBlockPos())};

    if (!ReadBlockFromDisk(block, block_pos, consensusParams)) {
        return false;
    }
    if (block.GetHash() != pindex->GetBlockHash()) {
        return error("ReadBlockFromDisk(CBlock&, CBlockIndex*): GetHash() doesn't match index for %s at %s",
                     pindex->ToString(), block_pos.ToString());
    }
    return true;
}

bool ReadRawBlockFromDisk(std::vector<uint8_t>& block, const FlatFilePos& pos, const CMessageHeader::MessageStartChars& message_start)
{
    FlatFilePos hpos = pos;
    hpos.nPos -= 8; // Seek back 8 bytes for meta header
    CAutoFile filein(OpenBlockFile(hpos, true), SER_DISK, CLIENT_VERSION);
    if (filein.IsNull()) {
        return error("%s: OpenBlockFile failed for %s", __func__, pos.ToString());
    }

    try {
        CMessageHeader::MessageStartChars blk_start;
        unsigned int blk_size;

        filein >> blk_start >> blk_size;

        if (memcmp(blk_start, message_start, CMessageHeader::MESSAGE_START_SIZE)) {
            return error("%s: Block magic mismatch for %s: %s versus expected %s", __func__, pos.ToString(),
                         HexStr(blk_start),
                         HexStr(message_start));
        }

        if (blk_size > MAX_SIZE) {
            return error("%s: Block data is larger than maximum deserialization size for %s: %s versus %s", __func__, pos.ToString(),
                         blk_size, MAX_SIZE);
        }

        block.resize(blk_size); // Zeroing of memory is intentional here
        filein.read(MakeWritableByteSpan(block));
    } catch (const std::exception& e) {
        return error("%s: Read from block file failed: %s for %s", __func__, e.what(), pos.ToString());
    }

    return true;
}

/** Store block on disk. If dbp is non-nullptr, the file is known to already reside on disk */
FlatFilePos BlockManager::SaveBlockToDisk(const CBlock& block, int nHeight, CChain& active_chain, const CChainParams& chainparams, const FlatFilePos* dbp)
{
    unsigned int nBlockSize = ::GetSerializeSize(block, CLIENT_VERSION);
    FlatFilePos blockPos;
    if (dbp != nullptr) {
        blockPos = *dbp;
    }
    if (!FindBlockPos(blockPos, nBlockSize + 8, nHeight, active_chain, block.GetBlockTime(), dbp != nullptr)) {
        error("%s: FindBlockPos failed", __func__);
        return FlatFilePos();
    }
    if (dbp == nullptr) {
        if (!WriteBlockToDisk(block, blockPos, chainparams.MessageStart())) {
            AbortNode("Failed to write block");
            return FlatFilePos();
        }
    }
    return blockPos;
}

struct CImportingNow {
    CImportingNow()
    {
        assert(fImporting == false);
        fImporting = true;
    }

    ~CImportingNow()
    {
        assert(fImporting == true);
        fImporting = false;
    }
};

void ThreadImport(ChainstateManager& chainman, std::vector<fs::path> vImportFiles, const ArgsManager& args)
{
    SetSyscallSandboxPolicy(SyscallSandboxPolicy::INITIALIZATION_LOAD_BLOCKS);
    ScheduleBatchPriority();

    {
        CImportingNow imp;

        // -reindex
        if (fReindex) {
            int nFile = 0;
            while (true) {
                FlatFilePos pos(nFile, 0);
                if (!fs::exists(GetBlockPosFilename(pos))) {
                    break; // No block files left to reindex
                }
                FILE* file = OpenBlockFile(pos, true);
                if (!file) {
                    break; // This error is logged in OpenBlockFile
                }
                LogPrintf("Reindexing block file blk%05u.dat...\n", (unsigned int)nFile);
                chainman.ActiveChainstate().LoadExternalBlockFile(file, &pos);
                if (ShutdownRequested()) {
                    LogPrintf("Shutdown requested. Exit %s\n", __func__);
                    return;
                }
                nFile++;
            }
            WITH_LOCK(::cs_main, chainman.m_blockman.m_block_tree_db->WriteReindexing(false));
            fReindex = false;
            LogPrintf("Reindexing finished\n");
            // To avoid ending up in a situation without genesis block, re-try initializing (no-op if reindexing worked):
            chainman.ActiveChainstate().LoadGenesisBlock();
        }

        // -loadblock=
        for (const fs::path& path : vImportFiles) {
            FILE* file = fsbridge::fopen(path, "rb");
            if (file) {
                LogPrintf("Importing blocks file %s...\n", fs::PathToString(path));
                chainman.ActiveChainstate().LoadExternalBlockFile(file);
                if (ShutdownRequested()) {
                    LogPrintf("Shutdown requested. Exit %s\n", __func__);
                    return;
                }
            } else {
                LogPrintf("Warning: Could not open blocks file %s\n", fs::PathToString(path));
            }
        }

        // scan for better chains in the block chain database, that are not yet connected in the active best chain

        // We can't hold cs_main during ActivateBestChain even though we're accessing
        // the chainman unique_ptrs since ABC requires us not to be holding cs_main, so retrieve
        // the relevant pointers before the ABC call.
        for (CChainState* chainstate : WITH_LOCK(::cs_main, return chainman.GetAll())) {
            BlockValidationState state;
            if (!chainstate->ActivateBestChain(state, nullptr)) {
                LogPrintf("Failed to connect best block (%s)\n", state.ToString());
                StartShutdown();
                return;
            }
        }

        if (args.GetBoolArg("-stopafterblockimport", DEFAULT_STOPAFTERBLOCKIMPORT)) {
            LogPrintf("Stopping after block import\n");
            StartShutdown();
            return;
        }
    } // End scope of CImportingNow
    chainman.ActiveChainstate().LoadMempool(args);
}
} // namespace node