1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <netbase.h>
#include <compat.h>
#include <sync.h>
#include <tinyformat.h>
#include <util/sock.h>
#include <util/strencodings.h>
#include <util/string.h>
#include <util/system.h>
#include <util/time.h>
#include <atomic>
#include <chrono>
#include <cstdint>
#include <functional>
#include <limits>
#include <memory>
#ifndef WIN32
#include <fcntl.h>
#endif
#ifdef USE_POLL
#include <poll.h>
#endif
// Settings
static Mutex g_proxyinfo_mutex;
static proxyType proxyInfo[NET_MAX] GUARDED_BY(g_proxyinfo_mutex);
static proxyType nameProxy GUARDED_BY(g_proxyinfo_mutex);
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
bool fNameLookup = DEFAULT_NAME_LOOKUP;
// Need ample time for negotiation for very slow proxies such as Tor (milliseconds)
int g_socks5_recv_timeout = 20 * 1000;
static std::atomic<bool> interruptSocks5Recv(false);
std::vector<CNetAddr> WrappedGetAddrInfo(const std::string& name, bool allow_lookup)
{
addrinfo ai_hint{};
// We want a TCP port, which is a streaming socket type
ai_hint.ai_socktype = SOCK_STREAM;
ai_hint.ai_protocol = IPPROTO_TCP;
// We don't care which address family (IPv4 or IPv6) is returned
ai_hint.ai_family = AF_UNSPEC;
// If we allow lookups of hostnames, use the AI_ADDRCONFIG flag to only
// return addresses whose family we have an address configured for.
//
// If we don't allow lookups, then use the AI_NUMERICHOST flag for
// getaddrinfo to only decode numerical network addresses and suppress
// hostname lookups.
ai_hint.ai_flags = allow_lookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
addrinfo* ai_res{nullptr};
const int n_err{getaddrinfo(name.c_str(), nullptr, &ai_hint, &ai_res)};
if (n_err != 0) {
return {};
}
// Traverse the linked list starting with ai_trav.
addrinfo* ai_trav{ai_res};
std::vector<CNetAddr> resolved_addresses;
while (ai_trav != nullptr) {
if (ai_trav->ai_family == AF_INET) {
assert(ai_trav->ai_addrlen >= sizeof(sockaddr_in));
resolved_addresses.emplace_back(reinterpret_cast<sockaddr_in*>(ai_trav->ai_addr)->sin_addr);
}
if (ai_trav->ai_family == AF_INET6) {
assert(ai_trav->ai_addrlen >= sizeof(sockaddr_in6));
const sockaddr_in6* s6{reinterpret_cast<sockaddr_in6*>(ai_trav->ai_addr)};
resolved_addresses.emplace_back(s6->sin6_addr, s6->sin6_scope_id);
}
ai_trav = ai_trav->ai_next;
}
freeaddrinfo(ai_res);
return resolved_addresses;
}
DNSLookupFn g_dns_lookup{WrappedGetAddrInfo};
enum Network ParseNetwork(const std::string& net_in) {
std::string net = ToLower(net_in);
if (net == "ipv4") return NET_IPV4;
if (net == "ipv6") return NET_IPV6;
if (net == "onion") return NET_ONION;
if (net == "tor") {
LogPrintf("Warning: net name 'tor' is deprecated and will be removed in the future. You should use 'onion' instead.\n");
return NET_ONION;
}
if (net == "i2p") {
return NET_I2P;
}
if (net == "cjdns") {
return NET_CJDNS;
}
return NET_UNROUTABLE;
}
std::string GetNetworkName(enum Network net)
{
switch (net) {
case NET_UNROUTABLE: return "not_publicly_routable";
case NET_IPV4: return "ipv4";
case NET_IPV6: return "ipv6";
case NET_ONION: return "onion";
case NET_I2P: return "i2p";
case NET_CJDNS: return "cjdns";
case NET_INTERNAL: return "internal";
case NET_MAX: assert(false);
} // no default case, so the compiler can warn about missing cases
assert(false);
}
std::vector<std::string> GetNetworkNames(bool append_unroutable)
{
std::vector<std::string> names;
for (int n = 0; n < NET_MAX; ++n) {
const enum Network network{static_cast<Network>(n)};
if (network == NET_UNROUTABLE || network == NET_CJDNS || network == NET_INTERNAL) continue;
names.emplace_back(GetNetworkName(network));
}
if (append_unroutable) {
names.emplace_back(GetNetworkName(NET_UNROUTABLE));
}
return names;
}
static bool LookupIntern(const std::string& name, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
vIP.clear();
if (!ValidAsCString(name)) {
return false;
}
{
CNetAddr addr;
// From our perspective, onion addresses are not hostnames but rather
// direct encodings of CNetAddr much like IPv4 dotted-decimal notation
// or IPv6 colon-separated hextet notation. Since we can't use
// getaddrinfo to decode them and it wouldn't make sense to resolve
// them, we return a network address representing it instead. See
// CNetAddr::SetSpecial(const std::string&) for more details.
if (addr.SetSpecial(name)) {
vIP.push_back(addr);
return true;
}
}
for (const CNetAddr& resolved : dns_lookup_function(name, fAllowLookup)) {
if (nMaxSolutions > 0 && vIP.size() >= nMaxSolutions) {
break;
}
/* Never allow resolving to an internal address. Consider any such result invalid */
if (!resolved.IsInternal()) {
vIP.push_back(resolved);
}
}
return (vIP.size() > 0);
}
bool LookupHost(const std::string& name, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::string strHost = name;
if (strHost.empty())
return false;
if (strHost.front() == '[' && strHost.back() == ']') {
strHost = strHost.substr(1, strHost.size() - 2);
}
return LookupIntern(strHost, vIP, nMaxSolutions, fAllowLookup, dns_lookup_function);
}
bool LookupHost(const std::string& name, CNetAddr& addr, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::vector<CNetAddr> vIP;
LookupHost(name, vIP, 1, fAllowLookup, dns_lookup_function);
if(vIP.empty())
return false;
addr = vIP.front();
return true;
}
bool Lookup(const std::string& name, std::vector<CService>& vAddr, uint16_t portDefault, bool fAllowLookup, unsigned int nMaxSolutions, DNSLookupFn dns_lookup_function)
{
if (name.empty() || !ValidAsCString(name)) {
return false;
}
uint16_t port{portDefault};
std::string hostname;
SplitHostPort(name, port, hostname);
std::vector<CNetAddr> vIP;
bool fRet = LookupIntern(hostname, vIP, nMaxSolutions, fAllowLookup, dns_lookup_function);
if (!fRet)
return false;
vAddr.resize(vIP.size());
for (unsigned int i = 0; i < vIP.size(); i++)
vAddr[i] = CService(vIP[i], port);
return true;
}
bool Lookup(const std::string& name, CService& addr, uint16_t portDefault, bool fAllowLookup, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return false;
}
std::vector<CService> vService;
bool fRet = Lookup(name, vService, portDefault, fAllowLookup, 1, dns_lookup_function);
if (!fRet)
return false;
addr = vService[0];
return true;
}
CService LookupNumeric(const std::string& name, uint16_t portDefault, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(name)) {
return {};
}
CService addr;
// "1.2:345" will fail to resolve the ip, but will still set the port.
// If the ip fails to resolve, re-init the result.
if(!Lookup(name, addr, portDefault, false, dns_lookup_function))
addr = CService();
return addr;
}
/** SOCKS version */
enum SOCKSVersion: uint8_t {
SOCKS4 = 0x04,
SOCKS5 = 0x05
};
/** Values defined for METHOD in RFC1928 */
enum SOCKS5Method: uint8_t {
NOAUTH = 0x00, //!< No authentication required
GSSAPI = 0x01, //!< GSSAPI
USER_PASS = 0x02, //!< Username/password
NO_ACCEPTABLE = 0xff, //!< No acceptable methods
};
/** Values defined for CMD in RFC1928 */
enum SOCKS5Command: uint8_t {
CONNECT = 0x01,
BIND = 0x02,
UDP_ASSOCIATE = 0x03
};
/** Values defined for REP in RFC1928 */
enum SOCKS5Reply: uint8_t {
SUCCEEDED = 0x00, //!< Succeeded
GENFAILURE = 0x01, //!< General failure
NOTALLOWED = 0x02, //!< Connection not allowed by ruleset
NETUNREACHABLE = 0x03, //!< Network unreachable
HOSTUNREACHABLE = 0x04, //!< Network unreachable
CONNREFUSED = 0x05, //!< Connection refused
TTLEXPIRED = 0x06, //!< TTL expired
CMDUNSUPPORTED = 0x07, //!< Command not supported
ATYPEUNSUPPORTED = 0x08, //!< Address type not supported
};
/** Values defined for ATYPE in RFC1928 */
enum SOCKS5Atyp: uint8_t {
IPV4 = 0x01,
DOMAINNAME = 0x03,
IPV6 = 0x04,
};
/** Status codes that can be returned by InterruptibleRecv */
enum class IntrRecvError {
OK,
Timeout,
Disconnected,
NetworkError,
Interrupted
};
/**
* Try to read a specified number of bytes from a socket. Please read the "see
* also" section for more detail.
*
* @param data The buffer where the read bytes should be stored.
* @param len The number of bytes to read into the specified buffer.
* @param timeout The total timeout in milliseconds for this read.
* @param sock The socket (has to be in non-blocking mode) from which to read bytes.
*
* @returns An IntrRecvError indicating the resulting status of this read.
* IntrRecvError::OK only if all of the specified number of bytes were
* read.
*
* @see This function can be interrupted by calling InterruptSocks5(bool).
* Sockets can be made non-blocking with SetSocketNonBlocking(const
* SOCKET&, bool).
*/
static IntrRecvError InterruptibleRecv(uint8_t* data, size_t len, int timeout, const Sock& sock)
{
int64_t curTime = GetTimeMillis();
int64_t endTime = curTime + timeout;
while (len > 0 && curTime < endTime) {
ssize_t ret = sock.Recv(data, len, 0); // Optimistically try the recv first
if (ret > 0) {
len -= ret;
data += ret;
} else if (ret == 0) { // Unexpected disconnection
return IntrRecvError::Disconnected;
} else { // Other error or blocking
int nErr = WSAGetLastError();
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) {
// Only wait at most MAX_WAIT_FOR_IO at a time, unless
// we're approaching the end of the specified total timeout
const auto remaining = std::chrono::milliseconds{endTime - curTime};
const auto timeout = std::min(remaining, std::chrono::milliseconds{MAX_WAIT_FOR_IO});
if (!sock.Wait(timeout, Sock::RECV)) {
return IntrRecvError::NetworkError;
}
} else {
return IntrRecvError::NetworkError;
}
}
if (interruptSocks5Recv)
return IntrRecvError::Interrupted;
curTime = GetTimeMillis();
}
return len == 0 ? IntrRecvError::OK : IntrRecvError::Timeout;
}
/** Convert SOCKS5 reply to an error message */
static std::string Socks5ErrorString(uint8_t err)
{
switch(err) {
case SOCKS5Reply::GENFAILURE:
return "general failure";
case SOCKS5Reply::NOTALLOWED:
return "connection not allowed";
case SOCKS5Reply::NETUNREACHABLE:
return "network unreachable";
case SOCKS5Reply::HOSTUNREACHABLE:
return "host unreachable";
case SOCKS5Reply::CONNREFUSED:
return "connection refused";
case SOCKS5Reply::TTLEXPIRED:
return "TTL expired";
case SOCKS5Reply::CMDUNSUPPORTED:
return "protocol error";
case SOCKS5Reply::ATYPEUNSUPPORTED:
return "address type not supported";
default:
return "unknown";
}
}
bool Socks5(const std::string& strDest, uint16_t port, const ProxyCredentials* auth, const Sock& sock)
{
IntrRecvError recvr;
LogPrint(BCLog::NET, "SOCKS5 connecting %s\n", strDest);
if (strDest.size() > 255) {
return error("Hostname too long");
}
// Construct the version identifier/method selection message
std::vector<uint8_t> vSocks5Init;
vSocks5Init.push_back(SOCKSVersion::SOCKS5); // We want the SOCK5 protocol
if (auth) {
vSocks5Init.push_back(0x02); // 2 method identifiers follow...
vSocks5Init.push_back(SOCKS5Method::NOAUTH);
vSocks5Init.push_back(SOCKS5Method::USER_PASS);
} else {
vSocks5Init.push_back(0x01); // 1 method identifier follows...
vSocks5Init.push_back(SOCKS5Method::NOAUTH);
}
ssize_t ret = sock.Send(vSocks5Init.data(), vSocks5Init.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5Init.size()) {
return error("Error sending to proxy");
}
uint8_t pchRet1[2];
if ((recvr = InterruptibleRecv(pchRet1, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
LogPrintf("Socks5() connect to %s:%d failed: InterruptibleRecv() timeout or other failure\n", strDest, port);
return false;
}
if (pchRet1[0] != SOCKSVersion::SOCKS5) {
return error("Proxy failed to initialize");
}
if (pchRet1[1] == SOCKS5Method::USER_PASS && auth) {
// Perform username/password authentication (as described in RFC1929)
std::vector<uint8_t> vAuth;
vAuth.push_back(0x01); // Current (and only) version of user/pass subnegotiation
if (auth->username.size() > 255 || auth->password.size() > 255)
return error("Proxy username or password too long");
vAuth.push_back(auth->username.size());
vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end());
vAuth.push_back(auth->password.size());
vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end());
ret = sock.Send(vAuth.data(), vAuth.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vAuth.size()) {
return error("Error sending authentication to proxy");
}
LogPrint(BCLog::PROXY, "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password);
uint8_t pchRetA[2];
if ((recvr = InterruptibleRecv(pchRetA, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
return error("Error reading proxy authentication response");
}
if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) {
return error("Proxy authentication unsuccessful");
}
} else if (pchRet1[1] == SOCKS5Method::NOAUTH) {
// Perform no authentication
} else {
return error("Proxy requested wrong authentication method %02x", pchRet1[1]);
}
std::vector<uint8_t> vSocks5;
vSocks5.push_back(SOCKSVersion::SOCKS5); // VER protocol version
vSocks5.push_back(SOCKS5Command::CONNECT); // CMD CONNECT
vSocks5.push_back(0x00); // RSV Reserved must be 0
vSocks5.push_back(SOCKS5Atyp::DOMAINNAME); // ATYP DOMAINNAME
vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function
vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end());
vSocks5.push_back((port >> 8) & 0xFF);
vSocks5.push_back((port >> 0) & 0xFF);
ret = sock.Send(vSocks5.data(), vSocks5.size(), MSG_NOSIGNAL);
if (ret != (ssize_t)vSocks5.size()) {
return error("Error sending to proxy");
}
uint8_t pchRet2[4];
if ((recvr = InterruptibleRecv(pchRet2, 4, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
if (recvr == IntrRecvError::Timeout) {
/* If a timeout happens here, this effectively means we timed out while connecting
* to the remote node. This is very common for Tor, so do not print an
* error message. */
return false;
} else {
return error("Error while reading proxy response");
}
}
if (pchRet2[0] != SOCKSVersion::SOCKS5) {
return error("Proxy failed to accept request");
}
if (pchRet2[1] != SOCKS5Reply::SUCCEEDED) {
// Failures to connect to a peer that are not proxy errors
LogPrintf("Socks5() connect to %s:%d failed: %s\n", strDest, port, Socks5ErrorString(pchRet2[1]));
return false;
}
if (pchRet2[2] != 0x00) { // Reserved field must be 0
return error("Error: malformed proxy response");
}
uint8_t pchRet3[256];
switch (pchRet2[3])
{
case SOCKS5Atyp::IPV4: recvr = InterruptibleRecv(pchRet3, 4, g_socks5_recv_timeout, sock); break;
case SOCKS5Atyp::IPV6: recvr = InterruptibleRecv(pchRet3, 16, g_socks5_recv_timeout, sock); break;
case SOCKS5Atyp::DOMAINNAME:
{
recvr = InterruptibleRecv(pchRet3, 1, g_socks5_recv_timeout, sock);
if (recvr != IntrRecvError::OK) {
return error("Error reading from proxy");
}
int nRecv = pchRet3[0];
recvr = InterruptibleRecv(pchRet3, nRecv, g_socks5_recv_timeout, sock);
break;
}
default: return error("Error: malformed proxy response");
}
if (recvr != IntrRecvError::OK) {
return error("Error reading from proxy");
}
if ((recvr = InterruptibleRecv(pchRet3, 2, g_socks5_recv_timeout, sock)) != IntrRecvError::OK) {
return error("Error reading from proxy");
}
LogPrint(BCLog::NET, "SOCKS5 connected %s\n", strDest);
return true;
}
std::unique_ptr<Sock> CreateSockTCP(const CService& address_family)
{
// Create a sockaddr from the specified service.
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (!address_family.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot create socket for %s: unsupported network\n", address_family.ToString());
return nullptr;
}
// Create a TCP socket in the address family of the specified service.
SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
if (hSocket == INVALID_SOCKET) {
return nullptr;
}
// Ensure that waiting for I/O on this socket won't result in undefined
// behavior.
if (!IsSelectableSocket(hSocket)) {
CloseSocket(hSocket);
LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
return nullptr;
}
#ifdef SO_NOSIGPIPE
int set = 1;
// Set the no-sigpipe option on the socket for BSD systems, other UNIXes
// should use the MSG_NOSIGNAL flag for every send.
setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif
// Set the no-delay option (disable Nagle's algorithm) on the TCP socket.
SetSocketNoDelay(hSocket);
// Set the non-blocking option on the socket.
if (!SetSocketNonBlocking(hSocket, true)) {
CloseSocket(hSocket);
LogPrintf("Error setting socket to non-blocking: %s\n", NetworkErrorString(WSAGetLastError()));
return nullptr;
}
return std::make_unique<Sock>(hSocket);
}
std::function<std::unique_ptr<Sock>(const CService&)> CreateSock = CreateSockTCP;
template<typename... Args>
static void LogConnectFailure(bool manual_connection, const char* fmt, const Args&... args) {
std::string error_message = tfm::format(fmt, args...);
if (manual_connection) {
LogPrintf("%s\n", error_message);
} else {
LogPrint(BCLog::NET, "%s\n", error_message);
}
}
bool ConnectSocketDirectly(const CService &addrConnect, const Sock& sock, int nTimeout, bool manual_connection)
{
// Create a sockaddr from the specified service.
struct sockaddr_storage sockaddr;
socklen_t len = sizeof(sockaddr);
if (sock.Get() == INVALID_SOCKET) {
LogPrintf("Cannot connect to %s: invalid socket\n", addrConnect.ToString());
return false;
}
if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
return false;
}
// Connect to the addrConnect service on the hSocket socket.
if (sock.Connect(reinterpret_cast<struct sockaddr*>(&sockaddr), len) == SOCKET_ERROR) {
int nErr = WSAGetLastError();
// WSAEINVAL is here because some legacy version of winsock uses it
if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
{
// Connection didn't actually fail, but is being established
// asynchronously. Thus, use async I/O api (select/poll)
// synchronously to check for successful connection with a timeout.
const Sock::Event requested = Sock::RECV | Sock::SEND;
Sock::Event occurred;
if (!sock.Wait(std::chrono::milliseconds{nTimeout}, requested, &occurred)) {
LogPrintf("wait for connect to %s failed: %s\n",
addrConnect.ToString(),
NetworkErrorString(WSAGetLastError()));
return false;
} else if (occurred == 0) {
LogPrint(BCLog::NET, "connection attempt to %s timed out\n", addrConnect.ToString());
return false;
}
// Even if the wait was successful, the connect might not
// have been successful. The reason for this failure is hidden away
// in the SO_ERROR for the socket in modern systems. We read it into
// sockerr here.
int sockerr;
socklen_t sockerr_len = sizeof(sockerr);
if (sock.GetSockOpt(SOL_SOCKET, SO_ERROR, (sockopt_arg_type)&sockerr, &sockerr_len) ==
SOCKET_ERROR) {
LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
return false;
}
if (sockerr != 0) {
LogConnectFailure(manual_connection,
"connect() to %s failed after wait: %s",
addrConnect.ToString(),
NetworkErrorString(sockerr));
return false;
}
}
#ifdef WIN32
else if (WSAGetLastError() != WSAEISCONN)
#else
else
#endif
{
LogConnectFailure(manual_connection, "connect() to %s failed: %s", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
return false;
}
}
return true;
}
bool SetProxy(enum Network net, const proxyType &addrProxy) {
assert(net >= 0 && net < NET_MAX);
if (!addrProxy.IsValid())
return false;
LOCK(g_proxyinfo_mutex);
proxyInfo[net] = addrProxy;
return true;
}
bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
assert(net >= 0 && net < NET_MAX);
LOCK(g_proxyinfo_mutex);
if (!proxyInfo[net].IsValid())
return false;
proxyInfoOut = proxyInfo[net];
return true;
}
bool SetNameProxy(const proxyType &addrProxy) {
if (!addrProxy.IsValid())
return false;
LOCK(g_proxyinfo_mutex);
nameProxy = addrProxy;
return true;
}
bool GetNameProxy(proxyType &nameProxyOut) {
LOCK(g_proxyinfo_mutex);
if(!nameProxy.IsValid())
return false;
nameProxyOut = nameProxy;
return true;
}
bool HaveNameProxy() {
LOCK(g_proxyinfo_mutex);
return nameProxy.IsValid();
}
bool IsProxy(const CNetAddr &addr) {
LOCK(g_proxyinfo_mutex);
for (int i = 0; i < NET_MAX; i++) {
if (addr == static_cast<CNetAddr>(proxyInfo[i].proxy))
return true;
}
return false;
}
bool ConnectThroughProxy(const proxyType& proxy, const std::string& strDest, uint16_t port, const Sock& sock, int nTimeout, bool& outProxyConnectionFailed)
{
// first connect to proxy server
if (!ConnectSocketDirectly(proxy.proxy, sock, nTimeout, true)) {
outProxyConnectionFailed = true;
return false;
}
// do socks negotiation
if (proxy.randomize_credentials) {
ProxyCredentials random_auth;
static std::atomic_int counter(0);
random_auth.username = random_auth.password = strprintf("%i", counter++);
if (!Socks5(strDest, port, &random_auth, sock)) {
return false;
}
} else {
if (!Socks5(strDest, port, 0, sock)) {
return false;
}
}
return true;
}
bool LookupSubNet(const std::string& strSubnet, CSubNet& ret, DNSLookupFn dns_lookup_function)
{
if (!ValidAsCString(strSubnet)) {
return false;
}
size_t slash = strSubnet.find_last_of('/');
std::vector<CNetAddr> vIP;
std::string strAddress = strSubnet.substr(0, slash);
// TODO: Use LookupHost(const std::string&, CNetAddr&, bool) instead to just get
// one CNetAddr.
if (LookupHost(strAddress, vIP, 1, false, dns_lookup_function))
{
CNetAddr network = vIP[0];
if (slash != strSubnet.npos)
{
std::string strNetmask = strSubnet.substr(slash + 1);
uint8_t n;
if (ParseUInt8(strNetmask, &n)) {
// If valid number, assume CIDR variable-length subnet masking
ret = CSubNet(network, n);
return ret.IsValid();
}
else // If not a valid number, try full netmask syntax
{
// Never allow lookup for netmask
if (LookupHost(strNetmask, vIP, 1, false, dns_lookup_function)) {
ret = CSubNet(network, vIP[0]);
return ret.IsValid();
}
}
}
else
{
ret = CSubNet(network);
return ret.IsValid();
}
}
return false;
}
bool SetSocketNonBlocking(const SOCKET& hSocket, bool fNonBlocking)
{
if (fNonBlocking) {
#ifdef WIN32
u_long nOne = 1;
if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
return false;
}
} else {
#ifdef WIN32
u_long nZero = 0;
if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
int fFlags = fcntl(hSocket, F_GETFL, 0);
if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
return false;
}
}
return true;
}
bool SetSocketNoDelay(const SOCKET& hSocket)
{
int set = 1;
int rc = setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
return rc == 0;
}
void InterruptSocks5(bool interrupt)
{
interruptSocks5Recv = interrupt;
}
|