aboutsummaryrefslogtreecommitdiff
path: root/src/netbase.cpp
blob: e7b589767a508241cc709bfc5d58b2278e8a4b90 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#ifdef HAVE_CONFIG_H
#include "config/bitcoin-config.h"
#endif

#include "netbase.h"

#include "hash.h"
#include "sync.h"
#include "uint256.h"
#include "random.h"
#include "util.h"
#include "utilstrencodings.h"

#ifdef HAVE_GETADDRINFO_A
#include <netdb.h>
#endif

#ifndef WIN32
#if HAVE_INET_PTON
#include <arpa/inet.h>
#endif
#include <fcntl.h>
#endif

#include <boost/algorithm/string/case_conv.hpp> // for to_lower()
#include <boost/algorithm/string/predicate.hpp> // for startswith() and endswith()
#include <boost/thread.hpp>

#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif

// Settings
static proxyType proxyInfo[NET_MAX];
static proxyType nameProxy;
static CCriticalSection cs_proxyInfos;
int nConnectTimeout = DEFAULT_CONNECT_TIMEOUT;
bool fNameLookup = false;

static const unsigned char pchIPv4[12] = { 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0xff, 0xff };

// Need ample time for negotiation for very slow proxies such as Tor (milliseconds)
static const int SOCKS5_RECV_TIMEOUT = 20 * 1000;

enum Network ParseNetwork(std::string net) {
    boost::to_lower(net);
    if (net == "ipv4") return NET_IPV4;
    if (net == "ipv6") return NET_IPV6;
    if (net == "tor" || net == "onion")  return NET_TOR;
    return NET_UNROUTABLE;
}

std::string GetNetworkName(enum Network net) {
    switch(net)
    {
    case NET_IPV4: return "ipv4";
    case NET_IPV6: return "ipv6";
    case NET_TOR: return "onion";
    default: return "";
    }
}

void SplitHostPort(std::string in, int &portOut, std::string &hostOut) {
    size_t colon = in.find_last_of(':');
    // if a : is found, and it either follows a [...], or no other : is in the string, treat it as port separator
    bool fHaveColon = colon != in.npos;
    bool fBracketed = fHaveColon && (in[0]=='[' && in[colon-1]==']'); // if there is a colon, and in[0]=='[', colon is not 0, so in[colon-1] is safe
    bool fMultiColon = fHaveColon && (in.find_last_of(':',colon-1) != in.npos);
    if (fHaveColon && (colon==0 || fBracketed || !fMultiColon)) {
        int32_t n;
        if (ParseInt32(in.substr(colon + 1), &n) && n > 0 && n < 0x10000) {
            in = in.substr(0, colon);
            portOut = n;
        }
    }
    if (in.size()>0 && in[0] == '[' && in[in.size()-1] == ']')
        hostOut = in.substr(1, in.size()-2);
    else
        hostOut = in;
}

bool static LookupIntern(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
    vIP.clear();

    {
        CNetAddr addr;
        if (addr.SetSpecial(std::string(pszName))) {
            vIP.push_back(addr);
            return true;
        }
    }

#ifdef HAVE_GETADDRINFO_A
    struct in_addr ipv4_addr;
#ifdef HAVE_INET_PTON
    if (inet_pton(AF_INET, pszName, &ipv4_addr) > 0) {
        vIP.push_back(CNetAddr(ipv4_addr));
        return true;
    }

    struct in6_addr ipv6_addr;
    if (inet_pton(AF_INET6, pszName, &ipv6_addr) > 0) {
        vIP.push_back(CNetAddr(ipv6_addr));
        return true;
    }
#else
    ipv4_addr.s_addr = inet_addr(pszName);
    if (ipv4_addr.s_addr != INADDR_NONE) {
        vIP.push_back(CNetAddr(ipv4_addr));
        return true;
    }
#endif
#endif

    struct addrinfo aiHint;
    memset(&aiHint, 0, sizeof(struct addrinfo));
    aiHint.ai_socktype = SOCK_STREAM;
    aiHint.ai_protocol = IPPROTO_TCP;
    aiHint.ai_family = AF_UNSPEC;
#ifdef WIN32
    aiHint.ai_flags = fAllowLookup ? 0 : AI_NUMERICHOST;
#else
    aiHint.ai_flags = fAllowLookup ? AI_ADDRCONFIG : AI_NUMERICHOST;
#endif

    struct addrinfo *aiRes = NULL;
#ifdef HAVE_GETADDRINFO_A
    struct gaicb gcb, *query = &gcb;
    memset(query, 0, sizeof(struct gaicb));
    gcb.ar_name = pszName;
    gcb.ar_request = &aiHint;
    int nErr = getaddrinfo_a(GAI_NOWAIT, &query, 1, NULL);
    if (nErr)
        return false;

    do {
        // Should set the timeout limit to a resonable value to avoid
        // generating unnecessary checking call during the polling loop,
        // while it can still response to stop request quick enough.
        // 2 seconds looks fine in our situation.
        struct timespec ts = { 2, 0 };
        gai_suspend(&query, 1, &ts);
        boost::this_thread::interruption_point();

        nErr = gai_error(query);
        if (0 == nErr)
            aiRes = query->ar_result;
    } while (nErr == EAI_INPROGRESS);
#else
    int nErr = getaddrinfo(pszName, NULL, &aiHint, &aiRes);
#endif
    if (nErr)
        return false;

    struct addrinfo *aiTrav = aiRes;
    while (aiTrav != NULL && (nMaxSolutions == 0 || vIP.size() < nMaxSolutions))
    {
        if (aiTrav->ai_family == AF_INET)
        {
            assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in));
            vIP.push_back(CNetAddr(((struct sockaddr_in*)(aiTrav->ai_addr))->sin_addr));
        }

        if (aiTrav->ai_family == AF_INET6)
        {
            assert(aiTrav->ai_addrlen >= sizeof(sockaddr_in6));
            vIP.push_back(CNetAddr(((struct sockaddr_in6*)(aiTrav->ai_addr))->sin6_addr));
        }

        aiTrav = aiTrav->ai_next;
    }

    freeaddrinfo(aiRes);

    return (vIP.size() > 0);
}

bool LookupHost(const char *pszName, std::vector<CNetAddr>& vIP, unsigned int nMaxSolutions, bool fAllowLookup)
{
    std::string strHost(pszName);
    if (strHost.empty())
        return false;
    if (boost::algorithm::starts_with(strHost, "[") && boost::algorithm::ends_with(strHost, "]"))
    {
        strHost = strHost.substr(1, strHost.size() - 2);
    }

    return LookupIntern(strHost.c_str(), vIP, nMaxSolutions, fAllowLookup);
}

bool Lookup(const char *pszName, std::vector<CService>& vAddr, int portDefault, bool fAllowLookup, unsigned int nMaxSolutions)
{
    if (pszName[0] == 0)
        return false;
    int port = portDefault;
    std::string hostname = "";
    SplitHostPort(std::string(pszName), port, hostname);

    std::vector<CNetAddr> vIP;
    bool fRet = LookupIntern(hostname.c_str(), vIP, nMaxSolutions, fAllowLookup);
    if (!fRet)
        return false;
    vAddr.resize(vIP.size());
    for (unsigned int i = 0; i < vIP.size(); i++)
        vAddr[i] = CService(vIP[i], port);
    return true;
}

bool Lookup(const char *pszName, CService& addr, int portDefault, bool fAllowLookup)
{
    std::vector<CService> vService;
    bool fRet = Lookup(pszName, vService, portDefault, fAllowLookup, 1);
    if (!fRet)
        return false;
    addr = vService[0];
    return true;
}

bool LookupNumeric(const char *pszName, CService& addr, int portDefault)
{
    return Lookup(pszName, addr, portDefault, false);
}

/**
 * Convert milliseconds to a struct timeval for select.
 */
struct timeval static MillisToTimeval(int64_t nTimeout)
{
    struct timeval timeout;
    timeout.tv_sec  = nTimeout / 1000;
    timeout.tv_usec = (nTimeout % 1000) * 1000;
    return timeout;
}

/**
 * Read bytes from socket. This will either read the full number of bytes requested
 * or return False on error or timeout.
 * This function can be interrupted by boost thread interrupt.
 *
 * @param data Buffer to receive into
 * @param len  Length of data to receive
 * @param timeout  Timeout in milliseconds for receive operation
 *
 * @note This function requires that hSocket is in non-blocking mode.
 */
bool static InterruptibleRecv(char* data, size_t len, int timeout, SOCKET& hSocket)
{
    int64_t curTime = GetTimeMillis();
    int64_t endTime = curTime + timeout;
    // Maximum time to wait in one select call. It will take up until this time (in millis)
    // to break off in case of an interruption.
    const int64_t maxWait = 1000;
    while (len > 0 && curTime < endTime) {
        ssize_t ret = recv(hSocket, data, len, 0); // Optimistically try the recv first
        if (ret > 0) {
            len -= ret;
            data += ret;
        } else if (ret == 0) { // Unexpected disconnection
            return false;
        } else { // Other error or blocking
            int nErr = WSAGetLastError();
            if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL) {
                struct timeval tval = MillisToTimeval(std::min(endTime - curTime, maxWait));
                fd_set fdset;
                FD_ZERO(&fdset);
                FD_SET(hSocket, &fdset);
                int nRet = select(hSocket + 1, &fdset, NULL, NULL, &tval);
                if (nRet == SOCKET_ERROR) {
                    return false;
                }
            } else {
                return false;
            }
        }
        boost::this_thread::interruption_point();
        curTime = GetTimeMillis();
    }
    return len == 0;
}

struct ProxyCredentials
{
    std::string username;
    std::string password;
};

/** Connect using SOCKS5 (as described in RFC1928) */
static bool Socks5(const std::string& strDest, int port, const ProxyCredentials *auth, SOCKET& hSocket)
{
    LogPrintf("SOCKS5 connecting %s\n", strDest);
    if (strDest.size() > 255) {
        CloseSocket(hSocket);
        return error("Hostname too long");
    }
    // Accepted authentication methods
    std::vector<uint8_t> vSocks5Init;
    vSocks5Init.push_back(0x05);
    if (auth) {
        vSocks5Init.push_back(0x02); // # METHODS
        vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
        vSocks5Init.push_back(0x02); // X'02' USERNAME/PASSWORD (RFC1929)
    } else {
        vSocks5Init.push_back(0x01); // # METHODS
        vSocks5Init.push_back(0x00); // X'00' NO AUTHENTICATION REQUIRED
    }
    ssize_t ret = send(hSocket, (const char*)begin_ptr(vSocks5Init), vSocks5Init.size(), MSG_NOSIGNAL);
    if (ret != (ssize_t)vSocks5Init.size()) {
        CloseSocket(hSocket);
        return error("Error sending to proxy");
    }
    char pchRet1[2];
    if (!InterruptibleRecv(pchRet1, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
        CloseSocket(hSocket);
        return error("Error reading proxy response");
    }
    if (pchRet1[0] != 0x05) {
        CloseSocket(hSocket);
        return error("Proxy failed to initialize");
    }
    if (pchRet1[1] == 0x02 && auth) {
        // Perform username/password authentication (as described in RFC1929)
        std::vector<uint8_t> vAuth;
        vAuth.push_back(0x01);
        if (auth->username.size() > 255 || auth->password.size() > 255)
            return error("Proxy username or password too long");
        vAuth.push_back(auth->username.size());
        vAuth.insert(vAuth.end(), auth->username.begin(), auth->username.end());
        vAuth.push_back(auth->password.size());
        vAuth.insert(vAuth.end(), auth->password.begin(), auth->password.end());
        ret = send(hSocket, (const char*)begin_ptr(vAuth), vAuth.size(), MSG_NOSIGNAL);
        if (ret != (ssize_t)vAuth.size()) {
            CloseSocket(hSocket);
            return error("Error sending authentication to proxy");
        }
        LogPrint("proxy", "SOCKS5 sending proxy authentication %s:%s\n", auth->username, auth->password);
        char pchRetA[2];
        if (!InterruptibleRecv(pchRetA, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
            CloseSocket(hSocket);
            return error("Error reading proxy authentication response");
        }
        if (pchRetA[0] != 0x01 || pchRetA[1] != 0x00) {
            CloseSocket(hSocket);
            return error("Proxy authentication unsuccessful");
        }
    } else if (pchRet1[1] == 0x00) {
        // Perform no authentication
    } else {
        CloseSocket(hSocket);
        return error("Proxy requested wrong authentication method %02x", pchRet1[1]);
    }
    std::vector<uint8_t> vSocks5;
    vSocks5.push_back(0x05); // VER protocol version
    vSocks5.push_back(0x01); // CMD CONNECT
    vSocks5.push_back(0x00); // RSV Reserved
    vSocks5.push_back(0x03); // ATYP DOMAINNAME
    vSocks5.push_back(strDest.size()); // Length<=255 is checked at beginning of function
    vSocks5.insert(vSocks5.end(), strDest.begin(), strDest.end());
    vSocks5.push_back((port >> 8) & 0xFF);
    vSocks5.push_back((port >> 0) & 0xFF);
    ret = send(hSocket, (const char*)begin_ptr(vSocks5), vSocks5.size(), MSG_NOSIGNAL);
    if (ret != (ssize_t)vSocks5.size()) {
        CloseSocket(hSocket);
        return error("Error sending to proxy");
    }
    char pchRet2[4];
    if (!InterruptibleRecv(pchRet2, 4, SOCKS5_RECV_TIMEOUT, hSocket)) {
        CloseSocket(hSocket);
        return error("Error reading proxy response");
    }
    if (pchRet2[0] != 0x05) {
        CloseSocket(hSocket);
        return error("Proxy failed to accept request");
    }
    if (pchRet2[1] != 0x00) {
        CloseSocket(hSocket);
        switch (pchRet2[1])
        {
            case 0x01: return error("Proxy error: general failure");
            case 0x02: return error("Proxy error: connection not allowed");
            case 0x03: return error("Proxy error: network unreachable");
            case 0x04: return error("Proxy error: host unreachable");
            case 0x05: return error("Proxy error: connection refused");
            case 0x06: return error("Proxy error: TTL expired");
            case 0x07: return error("Proxy error: protocol error");
            case 0x08: return error("Proxy error: address type not supported");
            default:   return error("Proxy error: unknown");
        }
    }
    if (pchRet2[2] != 0x00) {
        CloseSocket(hSocket);
        return error("Error: malformed proxy response");
    }
    char pchRet3[256];
    switch (pchRet2[3])
    {
        case 0x01: ret = InterruptibleRecv(pchRet3, 4, SOCKS5_RECV_TIMEOUT, hSocket); break;
        case 0x04: ret = InterruptibleRecv(pchRet3, 16, SOCKS5_RECV_TIMEOUT, hSocket); break;
        case 0x03:
        {
            ret = InterruptibleRecv(pchRet3, 1, SOCKS5_RECV_TIMEOUT, hSocket);
            if (!ret) {
                CloseSocket(hSocket);
                return error("Error reading from proxy");
            }
            int nRecv = pchRet3[0];
            ret = InterruptibleRecv(pchRet3, nRecv, SOCKS5_RECV_TIMEOUT, hSocket);
            break;
        }
        default: CloseSocket(hSocket); return error("Error: malformed proxy response");
    }
    if (!ret) {
        CloseSocket(hSocket);
        return error("Error reading from proxy");
    }
    if (!InterruptibleRecv(pchRet3, 2, SOCKS5_RECV_TIMEOUT, hSocket)) {
        CloseSocket(hSocket);
        return error("Error reading from proxy");
    }
    LogPrintf("SOCKS5 connected %s\n", strDest);
    return true;
}

bool static ConnectSocketDirectly(const CService &addrConnect, SOCKET& hSocketRet, int nTimeout)
{
    hSocketRet = INVALID_SOCKET;

    struct sockaddr_storage sockaddr;
    socklen_t len = sizeof(sockaddr);
    if (!addrConnect.GetSockAddr((struct sockaddr*)&sockaddr, &len)) {
        LogPrintf("Cannot connect to %s: unsupported network\n", addrConnect.ToString());
        return false;
    }

    SOCKET hSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
    if (hSocket == INVALID_SOCKET)
        return false;

#ifdef SO_NOSIGPIPE
    int set = 1;
    // Different way of disabling SIGPIPE on BSD
    setsockopt(hSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&set, sizeof(int));
#endif

    // Set to non-blocking
    if (!SetSocketNonBlocking(hSocket, true))
        return error("ConnectSocketDirectly: Setting socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));

    if (connect(hSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
    {
        int nErr = WSAGetLastError();
        // WSAEINVAL is here because some legacy version of winsock uses it
        if (nErr == WSAEINPROGRESS || nErr == WSAEWOULDBLOCK || nErr == WSAEINVAL)
        {
            struct timeval timeout = MillisToTimeval(nTimeout);
            fd_set fdset;
            FD_ZERO(&fdset);
            FD_SET(hSocket, &fdset);
            int nRet = select(hSocket + 1, NULL, &fdset, NULL, &timeout);
            if (nRet == 0)
            {
                LogPrint("net", "connection to %s timeout\n", addrConnect.ToString());
                CloseSocket(hSocket);
                return false;
            }
            if (nRet == SOCKET_ERROR)
            {
                LogPrintf("select() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
                CloseSocket(hSocket);
                return false;
            }
            socklen_t nRetSize = sizeof(nRet);
#ifdef WIN32
            if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, (char*)(&nRet), &nRetSize) == SOCKET_ERROR)
#else
            if (getsockopt(hSocket, SOL_SOCKET, SO_ERROR, &nRet, &nRetSize) == SOCKET_ERROR)
#endif
            {
                LogPrintf("getsockopt() for %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
                CloseSocket(hSocket);
                return false;
            }
            if (nRet != 0)
            {
                LogPrintf("connect() to %s failed after select(): %s\n", addrConnect.ToString(), NetworkErrorString(nRet));
                CloseSocket(hSocket);
                return false;
            }
        }
#ifdef WIN32
        else if (WSAGetLastError() != WSAEISCONN)
#else
        else
#endif
        {
            LogPrintf("connect() to %s failed: %s\n", addrConnect.ToString(), NetworkErrorString(WSAGetLastError()));
            CloseSocket(hSocket);
            return false;
        }
    }

    hSocketRet = hSocket;
    return true;
}

bool SetProxy(enum Network net, const proxyType &addrProxy) {
    assert(net >= 0 && net < NET_MAX);
    if (!addrProxy.IsValid())
        return false;
    LOCK(cs_proxyInfos);
    proxyInfo[net] = addrProxy;
    return true;
}

bool GetProxy(enum Network net, proxyType &proxyInfoOut) {
    assert(net >= 0 && net < NET_MAX);
    LOCK(cs_proxyInfos);
    if (!proxyInfo[net].IsValid())
        return false;
    proxyInfoOut = proxyInfo[net];
    return true;
}

bool SetNameProxy(const proxyType &addrProxy) {
    if (!addrProxy.IsValid())
        return false;
    LOCK(cs_proxyInfos);
    nameProxy = addrProxy;
    return true;
}

bool GetNameProxy(proxyType &nameProxyOut) {
    LOCK(cs_proxyInfos);
    if(!nameProxy.IsValid())
        return false;
    nameProxyOut = nameProxy;
    return true;
}

bool HaveNameProxy() {
    LOCK(cs_proxyInfos);
    return nameProxy.IsValid();
}

bool IsProxy(const CNetAddr &addr) {
    LOCK(cs_proxyInfos);
    for (int i = 0; i < NET_MAX; i++) {
        if (addr == (CNetAddr)proxyInfo[i].proxy)
            return true;
    }
    return false;
}

static bool ConnectThroughProxy(const proxyType &proxy, const std::string& strDest, int port, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
    SOCKET hSocket = INVALID_SOCKET;
    // first connect to proxy server
    if (!ConnectSocketDirectly(proxy.proxy, hSocket, nTimeout)) {
        if (outProxyConnectionFailed)
            *outProxyConnectionFailed = true;
        return false;
    }
    // do socks negotiation
    if (proxy.randomize_credentials) {
        ProxyCredentials random_auth;
        random_auth.username = strprintf("%i", insecure_rand());
        random_auth.password = strprintf("%i", insecure_rand());
        if (!Socks5(strDest, (unsigned short)port, &random_auth, hSocket))
            return false;
    } else {
        if (!Socks5(strDest, (unsigned short)port, 0, hSocket))
            return false;
    }

    hSocketRet = hSocket;
    return true;
}

bool ConnectSocket(const CService &addrDest, SOCKET& hSocketRet, int nTimeout, bool *outProxyConnectionFailed)
{
    proxyType proxy;
    if (outProxyConnectionFailed)
        *outProxyConnectionFailed = false;

    if (GetProxy(addrDest.GetNetwork(), proxy))
        return ConnectThroughProxy(proxy, addrDest.ToStringIP(), addrDest.GetPort(), hSocketRet, nTimeout, outProxyConnectionFailed);
    else // no proxy needed (none set for target network)
        return ConnectSocketDirectly(addrDest, hSocketRet, nTimeout);
}

bool ConnectSocketByName(CService &addr, SOCKET& hSocketRet, const char *pszDest, int portDefault, int nTimeout, bool *outProxyConnectionFailed)
{
    std::string strDest;
    int port = portDefault;

    if (outProxyConnectionFailed)
        *outProxyConnectionFailed = false;

    SplitHostPort(std::string(pszDest), port, strDest);

    proxyType nameProxy;
    GetNameProxy(nameProxy);

    CService addrResolved(CNetAddr(strDest, fNameLookup && !HaveNameProxy()), port);
    if (addrResolved.IsValid()) {
        addr = addrResolved;
        return ConnectSocket(addr, hSocketRet, nTimeout);
    }

    addr = CService("0.0.0.0:0");

    if (!HaveNameProxy())
        return false;
    return ConnectThroughProxy(nameProxy, strDest, port, hSocketRet, nTimeout, outProxyConnectionFailed);
}

void CNetAddr::Init()
{
    memset(ip, 0, sizeof(ip));
}

void CNetAddr::SetIP(const CNetAddr& ipIn)
{
    memcpy(ip, ipIn.ip, sizeof(ip));
}

void CNetAddr::SetRaw(Network network, const uint8_t *ip_in)
{
    switch(network)
    {
        case NET_IPV4:
            memcpy(ip, pchIPv4, 12);
            memcpy(ip+12, ip_in, 4);
            break;
        case NET_IPV6:
            memcpy(ip, ip_in, 16);
            break;
        default:
            assert(!"invalid network");
    }
}

static const unsigned char pchOnionCat[] = {0xFD,0x87,0xD8,0x7E,0xEB,0x43};

bool CNetAddr::SetSpecial(const std::string &strName)
{
    if (strName.size()>6 && strName.substr(strName.size() - 6, 6) == ".onion") {
        std::vector<unsigned char> vchAddr = DecodeBase32(strName.substr(0, strName.size() - 6).c_str());
        if (vchAddr.size() != 16-sizeof(pchOnionCat))
            return false;
        memcpy(ip, pchOnionCat, sizeof(pchOnionCat));
        for (unsigned int i=0; i<16-sizeof(pchOnionCat); i++)
            ip[i + sizeof(pchOnionCat)] = vchAddr[i];
        return true;
    }
    return false;
}

CNetAddr::CNetAddr()
{
    Init();
}

CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
    SetRaw(NET_IPV4, (const uint8_t*)&ipv4Addr);
}

CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr)
{
    SetRaw(NET_IPV6, (const uint8_t*)&ipv6Addr);
}

CNetAddr::CNetAddr(const char *pszIp, bool fAllowLookup)
{
    Init();
    std::vector<CNetAddr> vIP;
    if (LookupHost(pszIp, vIP, 1, fAllowLookup))
        *this = vIP[0];
}

CNetAddr::CNetAddr(const std::string &strIp, bool fAllowLookup)
{
    Init();
    std::vector<CNetAddr> vIP;
    if (LookupHost(strIp.c_str(), vIP, 1, fAllowLookup))
        *this = vIP[0];
}

unsigned int CNetAddr::GetByte(int n) const
{
    return ip[15-n];
}

bool CNetAddr::IsIPv4() const
{
    return (memcmp(ip, pchIPv4, sizeof(pchIPv4)) == 0);
}

bool CNetAddr::IsIPv6() const
{
    return (!IsIPv4() && !IsTor());
}

bool CNetAddr::IsRFC1918() const
{
    return IsIPv4() && (
        GetByte(3) == 10 ||
        (GetByte(3) == 192 && GetByte(2) == 168) ||
        (GetByte(3) == 172 && (GetByte(2) >= 16 && GetByte(2) <= 31)));
}

bool CNetAddr::IsRFC2544() const
{
    return IsIPv4() && GetByte(3) == 198 && (GetByte(2) == 18 || GetByte(2) == 19);
}

bool CNetAddr::IsRFC3927() const
{
    return IsIPv4() && (GetByte(3) == 169 && GetByte(2) == 254);
}

bool CNetAddr::IsRFC6598() const
{
    return IsIPv4() && GetByte(3) == 100 && GetByte(2) >= 64 && GetByte(2) <= 127;
}

bool CNetAddr::IsRFC5737() const
{
    return IsIPv4() && ((GetByte(3) == 192 && GetByte(2) == 0 && GetByte(1) == 2) ||
        (GetByte(3) == 198 && GetByte(2) == 51 && GetByte(1) == 100) ||
        (GetByte(3) == 203 && GetByte(2) == 0 && GetByte(1) == 113));
}

bool CNetAddr::IsRFC3849() const
{
    return GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x0D && GetByte(12) == 0xB8;
}

bool CNetAddr::IsRFC3964() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x02);
}

bool CNetAddr::IsRFC6052() const
{
    static const unsigned char pchRFC6052[] = {0,0x64,0xFF,0x9B,0,0,0,0,0,0,0,0};
    return (memcmp(ip, pchRFC6052, sizeof(pchRFC6052)) == 0);
}

bool CNetAddr::IsRFC4380() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0 && GetByte(12) == 0);
}

bool CNetAddr::IsRFC4862() const
{
    static const unsigned char pchRFC4862[] = {0xFE,0x80,0,0,0,0,0,0};
    return (memcmp(ip, pchRFC4862, sizeof(pchRFC4862)) == 0);
}

bool CNetAddr::IsRFC4193() const
{
    return ((GetByte(15) & 0xFE) == 0xFC);
}

bool CNetAddr::IsRFC6145() const
{
    static const unsigned char pchRFC6145[] = {0,0,0,0,0,0,0,0,0xFF,0xFF,0,0};
    return (memcmp(ip, pchRFC6145, sizeof(pchRFC6145)) == 0);
}

bool CNetAddr::IsRFC4843() const
{
    return (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x00 && (GetByte(12) & 0xF0) == 0x10);
}

bool CNetAddr::IsTor() const
{
    return (memcmp(ip, pchOnionCat, sizeof(pchOnionCat)) == 0);
}

bool CNetAddr::IsLocal() const
{
    // IPv4 loopback
   if (IsIPv4() && (GetByte(3) == 127 || GetByte(3) == 0))
       return true;

   // IPv6 loopback (::1/128)
   static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
   if (memcmp(ip, pchLocal, 16) == 0)
       return true;

   return false;
}

bool CNetAddr::IsMulticast() const
{
    return    (IsIPv4() && (GetByte(3) & 0xF0) == 0xE0)
           || (GetByte(15) == 0xFF);
}

bool CNetAddr::IsValid() const
{
    // Cleanup 3-byte shifted addresses caused by garbage in size field
    // of addr messages from versions before 0.2.9 checksum.
    // Two consecutive addr messages look like this:
    // header20 vectorlen3 addr26 addr26 addr26 header20 vectorlen3 addr26 addr26 addr26...
    // so if the first length field is garbled, it reads the second batch
    // of addr misaligned by 3 bytes.
    if (memcmp(ip, pchIPv4+3, sizeof(pchIPv4)-3) == 0)
        return false;

    // unspecified IPv6 address (::/128)
    unsigned char ipNone[16] = {};
    if (memcmp(ip, ipNone, 16) == 0)
        return false;

    // documentation IPv6 address
    if (IsRFC3849())
        return false;

    if (IsIPv4())
    {
        // INADDR_NONE
        uint32_t ipNone = INADDR_NONE;
        if (memcmp(ip+12, &ipNone, 4) == 0)
            return false;

        // 0
        ipNone = 0;
        if (memcmp(ip+12, &ipNone, 4) == 0)
            return false;
    }

    return true;
}

bool CNetAddr::IsRoutable() const
{
    return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsLocal());
}

enum Network CNetAddr::GetNetwork() const
{
    if (!IsRoutable())
        return NET_UNROUTABLE;

    if (IsIPv4())
        return NET_IPV4;

    if (IsTor())
        return NET_TOR;

    return NET_IPV6;
}

std::string CNetAddr::ToStringIP() const
{
    if (IsTor())
        return EncodeBase32(&ip[6], 10) + ".onion";
    CService serv(*this, 0);
    struct sockaddr_storage sockaddr;
    socklen_t socklen = sizeof(sockaddr);
    if (serv.GetSockAddr((struct sockaddr*)&sockaddr, &socklen)) {
        char name[1025] = "";
        if (!getnameinfo((const struct sockaddr*)&sockaddr, socklen, name, sizeof(name), NULL, 0, NI_NUMERICHOST))
            return std::string(name);
    }
    if (IsIPv4())
        return strprintf("%u.%u.%u.%u", GetByte(3), GetByte(2), GetByte(1), GetByte(0));
    else
        return strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
                         GetByte(15) << 8 | GetByte(14), GetByte(13) << 8 | GetByte(12),
                         GetByte(11) << 8 | GetByte(10), GetByte(9) << 8 | GetByte(8),
                         GetByte(7) << 8 | GetByte(6), GetByte(5) << 8 | GetByte(4),
                         GetByte(3) << 8 | GetByte(2), GetByte(1) << 8 | GetByte(0));
}

std::string CNetAddr::ToString() const
{
    return ToStringIP();
}

bool operator==(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) == 0);
}

bool operator!=(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) != 0);
}

bool operator<(const CNetAddr& a, const CNetAddr& b)
{
    return (memcmp(a.ip, b.ip, 16) < 0);
}

bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
    if (!IsIPv4())
        return false;
    memcpy(pipv4Addr, ip+12, 4);
    return true;
}

bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
    memcpy(pipv6Addr, ip, 16);
    return true;
}

// get canonical identifier of an address' group
// no two connections will be attempted to addresses with the same group
std::vector<unsigned char> CNetAddr::GetGroup() const
{
    std::vector<unsigned char> vchRet;
    int nClass = NET_IPV6;
    int nStartByte = 0;
    int nBits = 16;

    // all local addresses belong to the same group
    if (IsLocal())
    {
        nClass = 255;
        nBits = 0;
    }

    // all unroutable addresses belong to the same group
    if (!IsRoutable())
    {
        nClass = NET_UNROUTABLE;
        nBits = 0;
    }
    // for IPv4 addresses, '1' + the 16 higher-order bits of the IP
    // includes mapped IPv4, SIIT translated IPv4, and the well-known prefix
    else if (IsIPv4() || IsRFC6145() || IsRFC6052())
    {
        nClass = NET_IPV4;
        nStartByte = 12;
    }
    // for 6to4 tunnelled addresses, use the encapsulated IPv4 address
    else if (IsRFC3964())
    {
        nClass = NET_IPV4;
        nStartByte = 2;
    }
    // for Teredo-tunnelled IPv6 addresses, use the encapsulated IPv4 address
    else if (IsRFC4380())
    {
        vchRet.push_back(NET_IPV4);
        vchRet.push_back(GetByte(3) ^ 0xFF);
        vchRet.push_back(GetByte(2) ^ 0xFF);
        return vchRet;
    }
    else if (IsTor())
    {
        nClass = NET_TOR;
        nStartByte = 6;
        nBits = 4;
    }
    // for he.net, use /36 groups
    else if (GetByte(15) == 0x20 && GetByte(14) == 0x01 && GetByte(13) == 0x04 && GetByte(12) == 0x70)
        nBits = 36;
    // for the rest of the IPv6 network, use /32 groups
    else
        nBits = 32;

    vchRet.push_back(nClass);
    while (nBits >= 8)
    {
        vchRet.push_back(GetByte(15 - nStartByte));
        nStartByte++;
        nBits -= 8;
    }
    if (nBits > 0)
        vchRet.push_back(GetByte(15 - nStartByte) | ((1 << (8 - nBits)) - 1));

    return vchRet;
}

uint64_t CNetAddr::GetHash() const
{
    uint256 hash = Hash(&ip[0], &ip[16]);
    uint64_t nRet;
    memcpy(&nRet, &hash, sizeof(nRet));
    return nRet;
}

// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO  = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
    if (addr == NULL)
        return NET_UNKNOWN;
    if (addr->IsRFC4380())
        return NET_TEREDO;
    return addr->GetNetwork();
}

/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
    enum Reachability {
        REACH_UNREACHABLE,
        REACH_DEFAULT,
        REACH_TEREDO,
        REACH_IPV6_WEAK,
        REACH_IPV4,
        REACH_IPV6_STRONG,
        REACH_PRIVATE
    };

    if (!IsRoutable())
        return REACH_UNREACHABLE;

    int ourNet = GetExtNetwork(this);
    int theirNet = GetExtNetwork(paddrPartner);
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();

    switch(theirNet) {
    case NET_IPV4:
        switch(ourNet) {
        default:       return REACH_DEFAULT;
        case NET_IPV4: return REACH_IPV4;
        }
    case NET_IPV6:
        switch(ourNet) {
        default:         return REACH_DEFAULT;
        case NET_TEREDO: return REACH_TEREDO;
        case NET_IPV4:   return REACH_IPV4;
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
        }
    case NET_TOR:
        switch(ourNet) {
        default:         return REACH_DEFAULT;
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
        case NET_TOR:    return REACH_PRIVATE;
        }
    case NET_TEREDO:
        switch(ourNet) {
        default:          return REACH_DEFAULT;
        case NET_TEREDO:  return REACH_TEREDO;
        case NET_IPV6:    return REACH_IPV6_WEAK;
        case NET_IPV4:    return REACH_IPV4;
        }
    case NET_UNKNOWN:
    case NET_UNROUTABLE:
    default:
        switch(ourNet) {
        default:          return REACH_DEFAULT;
        case NET_TEREDO:  return REACH_TEREDO;
        case NET_IPV6:    return REACH_IPV6_WEAK;
        case NET_IPV4:    return REACH_IPV4;
        case NET_TOR:     return REACH_PRIVATE; // either from Tor, or don't care about our address
        }
    }
}

void CService::Init()
{
    port = 0;
}

CService::CService()
{
    Init();
}

CService::CService(const CNetAddr& cip, unsigned short portIn) : CNetAddr(cip), port(portIn)
{
}

CService::CService(const struct in_addr& ipv4Addr, unsigned short portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}

CService::CService(const struct in6_addr& ipv6Addr, unsigned short portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}

CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
    assert(addr.sin_family == AF_INET);
}

CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr), port(ntohs(addr.sin6_port))
{
   assert(addr.sin6_family == AF_INET6);
}

bool CService::SetSockAddr(const struct sockaddr *paddr)
{
    switch (paddr->sa_family) {
    case AF_INET:
        *this = CService(*(const struct sockaddr_in*)paddr);
        return true;
    case AF_INET6:
        *this = CService(*(const struct sockaddr_in6*)paddr);
        return true;
    default:
        return false;
    }
}

CService::CService(const char *pszIpPort, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(pszIpPort, ip, 0, fAllowLookup))
        *this = ip;
}

CService::CService(const char *pszIpPort, int portDefault, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(pszIpPort, ip, portDefault, fAllowLookup))
        *this = ip;
}

CService::CService(const std::string &strIpPort, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(strIpPort.c_str(), ip, 0, fAllowLookup))
        *this = ip;
}

CService::CService(const std::string &strIpPort, int portDefault, bool fAllowLookup)
{
    Init();
    CService ip;
    if (Lookup(strIpPort.c_str(), ip, portDefault, fAllowLookup))
        *this = ip;
}

unsigned short CService::GetPort() const
{
    return port;
}

bool operator==(const CService& a, const CService& b)
{
    return (CNetAddr)a == (CNetAddr)b && a.port == b.port;
}

bool operator!=(const CService& a, const CService& b)
{
    return (CNetAddr)a != (CNetAddr)b || a.port != b.port;
}

bool operator<(const CService& a, const CService& b)
{
    return (CNetAddr)a < (CNetAddr)b || ((CNetAddr)a == (CNetAddr)b && a.port < b.port);
}

bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
    if (IsIPv4()) {
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
            return false;
        *addrlen = sizeof(struct sockaddr_in);
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
        memset(paddrin, 0, *addrlen);
        if (!GetInAddr(&paddrin->sin_addr))
            return false;
        paddrin->sin_family = AF_INET;
        paddrin->sin_port = htons(port);
        return true;
    }
    if (IsIPv6()) {
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
            return false;
        *addrlen = sizeof(struct sockaddr_in6);
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
        memset(paddrin6, 0, *addrlen);
        if (!GetIn6Addr(&paddrin6->sin6_addr))
            return false;
        paddrin6->sin6_family = AF_INET6;
        paddrin6->sin6_port = htons(port);
        return true;
    }
    return false;
}

std::vector<unsigned char> CService::GetKey() const
{
     std::vector<unsigned char> vKey;
     vKey.resize(18);
     memcpy(&vKey[0], ip, 16);
     vKey[16] = port / 0x100;
     vKey[17] = port & 0x0FF;
     return vKey;
}

std::string CService::ToStringPort() const
{
    return strprintf("%u", port);
}

std::string CService::ToStringIPPort() const
{
    if (IsIPv4() || IsTor()) {
        return ToStringIP() + ":" + ToStringPort();
    } else {
        return "[" + ToStringIP() + "]:" + ToStringPort();
    }
}

std::string CService::ToString() const
{
    return ToStringIPPort();
}

void CService::SetPort(unsigned short portIn)
{
    port = portIn;
}

CSubNet::CSubNet():
    valid(false)
{
    memset(netmask, 0, sizeof(netmask));
}

CSubNet::CSubNet(const std::string &strSubnet, bool fAllowLookup)
{
    size_t slash = strSubnet.find_last_of('/');
    std::vector<CNetAddr> vIP;

    valid = true;
    // Default to /32 (IPv4) or /128 (IPv6), i.e. match single address
    memset(netmask, 255, sizeof(netmask));

    std::string strAddress = strSubnet.substr(0, slash);
    if (LookupHost(strAddress.c_str(), vIP, 1, fAllowLookup))
    {
        network = vIP[0];
        if (slash != strSubnet.npos)
        {
            std::string strNetmask = strSubnet.substr(slash + 1);
            int32_t n;
            // IPv4 addresses start at offset 12, and first 12 bytes must match, so just offset n
            const int astartofs = network.IsIPv4() ? 12 : 0;
            if (ParseInt32(strNetmask, &n)) // If valid number, assume /24 symtex
            {
                if(n >= 0 && n <= (128 - astartofs*8)) // Only valid if in range of bits of address
                {
                    n += astartofs*8;
                    // Clear bits [n..127]
                    for (; n < 128; ++n)
                        netmask[n>>3] &= ~(1<<(7-(n&7)));
                }
                else
                {
                    valid = false;
                }
            }
            else // If not a valid number, try full netmask syntax
            {
                if (LookupHost(strNetmask.c_str(), vIP, 1, false)) // Never allow lookup for netmask
                {
                    // Copy only the *last* four bytes in case of IPv4, the rest of the mask should stay 1's as
                    // we don't want pchIPv4 to be part of the mask.
                    for(int x=astartofs; x<16; ++x)
                        netmask[x] = vIP[0].ip[x];
                }
                else
                {
                    valid = false;
                }
            }
        }
    }
    else
    {
        valid = false;
    }

    // Normalize network according to netmask
    for(int x=0; x<16; ++x)
        network.ip[x] &= netmask[x];
}

bool CSubNet::Match(const CNetAddr &addr) const
{
    if (!valid || !addr.IsValid())
        return false;
    for(int x=0; x<16; ++x)
        if ((addr.ip[x] & netmask[x]) != network.ip[x])
            return false;
    return true;
}

std::string CSubNet::ToString() const
{
    std::string strNetmask;
    if (network.IsIPv4())
        strNetmask = strprintf("%u.%u.%u.%u", netmask[12], netmask[13], netmask[14], netmask[15]);
    else
        strNetmask = strprintf("%x:%x:%x:%x:%x:%x:%x:%x",
                         netmask[0] << 8 | netmask[1], netmask[2] << 8 | netmask[3],
                         netmask[4] << 8 | netmask[5], netmask[6] << 8 | netmask[7],
                         netmask[8] << 8 | netmask[9], netmask[10] << 8 | netmask[11],
                         netmask[12] << 8 | netmask[13], netmask[14] << 8 | netmask[15]);
    return network.ToString() + "/" + strNetmask;
}

bool CSubNet::IsValid() const
{
    return valid;
}

bool operator==(const CSubNet& a, const CSubNet& b)
{
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
}

bool operator!=(const CSubNet& a, const CSubNet& b)
{
    return !(a==b);
}

#ifdef WIN32
std::string NetworkErrorString(int err)
{
    char buf[256];
    buf[0] = 0;
    if(FormatMessageA(FORMAT_MESSAGE_FROM_SYSTEM | FORMAT_MESSAGE_IGNORE_INSERTS | FORMAT_MESSAGE_MAX_WIDTH_MASK,
            NULL, err, MAKELANGID(LANG_NEUTRAL, SUBLANG_DEFAULT),
            buf, sizeof(buf), NULL))
    {
        return strprintf("%s (%d)", buf, err);
    }
    else
    {
        return strprintf("Unknown error (%d)", err);
    }
}
#else
std::string NetworkErrorString(int err)
{
    char buf[256];
    const char *s = buf;
    buf[0] = 0;
    /* Too bad there are two incompatible implementations of the
     * thread-safe strerror. */
#ifdef STRERROR_R_CHAR_P /* GNU variant can return a pointer outside the passed buffer */
    s = strerror_r(err, buf, sizeof(buf));
#else /* POSIX variant always returns message in buffer */
    if (strerror_r(err, buf, sizeof(buf)))
        buf[0] = 0;
#endif
    return strprintf("%s (%d)", s, err);
}
#endif

bool CloseSocket(SOCKET& hSocket)
{
    if (hSocket == INVALID_SOCKET)
        return false;
#ifdef WIN32
    int ret = closesocket(hSocket);
#else
    int ret = close(hSocket);
#endif
    hSocket = INVALID_SOCKET;
    return ret != SOCKET_ERROR;
}

bool SetSocketNonBlocking(SOCKET& hSocket, bool fNonBlocking)
{
    if (fNonBlocking) {
#ifdef WIN32
        u_long nOne = 1;
        if (ioctlsocket(hSocket, FIONBIO, &nOne) == SOCKET_ERROR) {
#else
        int fFlags = fcntl(hSocket, F_GETFL, 0);
        if (fcntl(hSocket, F_SETFL, fFlags | O_NONBLOCK) == SOCKET_ERROR) {
#endif
            CloseSocket(hSocket);
            return false;
        }
    } else {
#ifdef WIN32
        u_long nZero = 0;
        if (ioctlsocket(hSocket, FIONBIO, &nZero) == SOCKET_ERROR) {
#else
        int fFlags = fcntl(hSocket, F_GETFL, 0);
        if (fcntl(hSocket, F_SETFL, fFlags & ~O_NONBLOCK) == SOCKET_ERROR) {
#endif
            CloseSocket(hSocket);
            return false;
        }
    }

    return true;
}