aboutsummaryrefslogtreecommitdiff
path: root/src/netaddress.cpp
blob: 11ad214107883558313334eb87e4bc032fcdf08a (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <netaddress.h>

#include <crypto/common.h>
#include <crypto/sha3.h>
#include <hash.h>
#include <prevector.h>
#include <tinyformat.h>
#include <util/asmap.h>
#include <util/strencodings.h>
#include <util/string.h>

#include <algorithm>
#include <array>
#include <cstdint>
#include <ios>
#include <iterator>
#include <tuple>

constexpr size_t CNetAddr::V1_SERIALIZATION_SIZE;
constexpr size_t CNetAddr::MAX_ADDRV2_SIZE;

CNetAddr::BIP155Network CNetAddr::GetBIP155Network() const
{
    switch (m_net) {
    case NET_IPV4:
        return BIP155Network::IPV4;
    case NET_IPV6:
        return BIP155Network::IPV6;
    case NET_ONION:
        return BIP155Network::TORV3;
    case NET_I2P:
        return BIP155Network::I2P;
    case NET_CJDNS:
        return BIP155Network::CJDNS;
    case NET_INTERNAL:   // should have been handled before calling this function
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
        assert(false);
    } // no default case, so the compiler can warn about missing cases

    assert(false);
}

bool CNetAddr::SetNetFromBIP155Network(uint8_t possible_bip155_net, size_t address_size)
{
    switch (possible_bip155_net) {
    case BIP155Network::IPV4:
        if (address_size == ADDR_IPV4_SIZE) {
            m_net = NET_IPV4;
            return true;
        }
        throw std::ios_base::failure(
            strprintf("BIP155 IPv4 address with length %u (should be %u)", address_size,
                      ADDR_IPV4_SIZE));
    case BIP155Network::IPV6:
        if (address_size == ADDR_IPV6_SIZE) {
            m_net = NET_IPV6;
            return true;
        }
        throw std::ios_base::failure(
            strprintf("BIP155 IPv6 address with length %u (should be %u)", address_size,
                      ADDR_IPV6_SIZE));
    case BIP155Network::TORV3:
        if (address_size == ADDR_TORV3_SIZE) {
            m_net = NET_ONION;
            return true;
        }
        throw std::ios_base::failure(
            strprintf("BIP155 TORv3 address with length %u (should be %u)", address_size,
                      ADDR_TORV3_SIZE));
    case BIP155Network::I2P:
        if (address_size == ADDR_I2P_SIZE) {
            m_net = NET_I2P;
            return true;
        }
        throw std::ios_base::failure(
            strprintf("BIP155 I2P address with length %u (should be %u)", address_size,
                      ADDR_I2P_SIZE));
    case BIP155Network::CJDNS:
        if (address_size == ADDR_CJDNS_SIZE) {
            m_net = NET_CJDNS;
            return true;
        }
        throw std::ios_base::failure(
            strprintf("BIP155 CJDNS address with length %u (should be %u)", address_size,
                      ADDR_CJDNS_SIZE));
    }

    // Don't throw on addresses with unknown network ids (maybe from the future).
    // Instead silently drop them and have the unserialization code consume
    // subsequent ones which may be known to us.
    return false;
}

/**
 * Construct an unspecified IPv6 network address (::/128).
 *
 * @note This address is considered invalid by CNetAddr::IsValid()
 */
CNetAddr::CNetAddr() {}

void CNetAddr::SetIP(const CNetAddr& ipIn)
{
    // Size check.
    switch (ipIn.m_net) {
    case NET_IPV4:
        assert(ipIn.m_addr.size() == ADDR_IPV4_SIZE);
        break;
    case NET_IPV6:
        assert(ipIn.m_addr.size() == ADDR_IPV6_SIZE);
        break;
    case NET_ONION:
        assert(ipIn.m_addr.size() == ADDR_TORV3_SIZE);
        break;
    case NET_I2P:
        assert(ipIn.m_addr.size() == ADDR_I2P_SIZE);
        break;
    case NET_CJDNS:
        assert(ipIn.m_addr.size() == ADDR_CJDNS_SIZE);
        break;
    case NET_INTERNAL:
        assert(ipIn.m_addr.size() == ADDR_INTERNAL_SIZE);
        break;
    case NET_UNROUTABLE:
    case NET_MAX:
        assert(false);
    } // no default case, so the compiler can warn about missing cases

    m_net = ipIn.m_net;
    m_addr = ipIn.m_addr;
}

void CNetAddr::SetLegacyIPv6(Span<const uint8_t> ipv6)
{
    assert(ipv6.size() == ADDR_IPV6_SIZE);

    size_t skip{0};

    if (HasPrefix(ipv6, IPV4_IN_IPV6_PREFIX)) {
        // IPv4-in-IPv6
        m_net = NET_IPV4;
        skip = sizeof(IPV4_IN_IPV6_PREFIX);
    } else if (HasPrefix(ipv6, TORV2_IN_IPV6_PREFIX)) {
        // TORv2-in-IPv6 (unsupported). Unserialize as !IsValid(), thus ignoring them.
        // Mimic a default-constructed CNetAddr object which is !IsValid() and thus
        // will not be gossiped, but continue reading next addresses from the stream.
        m_net = NET_IPV6;
        m_addr.assign(ADDR_IPV6_SIZE, 0x0);
        return;
    } else if (HasPrefix(ipv6, INTERNAL_IN_IPV6_PREFIX)) {
        // Internal-in-IPv6
        m_net = NET_INTERNAL;
        skip = sizeof(INTERNAL_IN_IPV6_PREFIX);
    } else {
        // IPv6
        m_net = NET_IPV6;
    }

    m_addr.assign(ipv6.begin() + skip, ipv6.end());
}

/**
 * Create an "internal" address that represents a name or FQDN. CAddrMan uses
 * these fake addresses to keep track of which DNS seeds were used.
 * @returns Whether or not the operation was successful.
 * @see NET_INTERNAL, INTERNAL_IN_IPV6_PREFIX, CNetAddr::IsInternal(), CNetAddr::IsRFC4193()
 */
bool CNetAddr::SetInternal(const std::string &name)
{
    if (name.empty()) {
        return false;
    }
    m_net = NET_INTERNAL;
    unsigned char hash[32] = {};
    CSHA256().Write((const unsigned char*)name.data(), name.size()).Finalize(hash);
    m_addr.assign(hash, hash + ADDR_INTERNAL_SIZE);
    return true;
}

namespace torv3 {
// https://gitweb.torproject.org/torspec.git/tree/rend-spec-v3.txt#n2135
static constexpr size_t CHECKSUM_LEN = 2;
static const unsigned char VERSION[] = {3};
static constexpr size_t TOTAL_LEN = ADDR_TORV3_SIZE + CHECKSUM_LEN + sizeof(VERSION);

static void Checksum(Span<const uint8_t> addr_pubkey, uint8_t (&checksum)[CHECKSUM_LEN])
{
    // TORv3 CHECKSUM = H(".onion checksum" | PUBKEY | VERSION)[:2]
    static const unsigned char prefix[] = ".onion checksum";
    static constexpr size_t prefix_len = 15;

    SHA3_256 hasher;

    hasher.Write(MakeSpan(prefix).first(prefix_len));
    hasher.Write(addr_pubkey);
    hasher.Write(VERSION);

    uint8_t checksum_full[SHA3_256::OUTPUT_SIZE];

    hasher.Finalize(checksum_full);

    memcpy(checksum, checksum_full, sizeof(checksum));
}

}; // namespace torv3

bool CNetAddr::SetSpecial(const std::string& addr)
{
    if (!ValidAsCString(addr)) {
        return false;
    }

    if (SetTor(addr)) {
        return true;
    }

    if (SetI2P(addr)) {
        return true;
    }

    return false;
}

bool CNetAddr::SetTor(const std::string& addr)
{
    static const char* suffix{".onion"};
    static constexpr size_t suffix_len{6};

    if (addr.size() <= suffix_len || addr.substr(addr.size() - suffix_len) != suffix) {
        return false;
    }

    bool invalid;
    const auto& input = DecodeBase32(addr.substr(0, addr.size() - suffix_len).c_str(), &invalid);

    if (invalid) {
        return false;
    }

    if (input.size() == torv3::TOTAL_LEN) {
        Span<const uint8_t> input_pubkey{input.data(), ADDR_TORV3_SIZE};
        Span<const uint8_t> input_checksum{input.data() + ADDR_TORV3_SIZE, torv3::CHECKSUM_LEN};
        Span<const uint8_t> input_version{input.data() + ADDR_TORV3_SIZE + torv3::CHECKSUM_LEN, sizeof(torv3::VERSION)};

        if (input_version != torv3::VERSION) {
            return false;
        }

        uint8_t calculated_checksum[torv3::CHECKSUM_LEN];
        torv3::Checksum(input_pubkey, calculated_checksum);

        if (input_checksum != calculated_checksum) {
            return false;
        }

        m_net = NET_ONION;
        m_addr.assign(input_pubkey.begin(), input_pubkey.end());
        return true;
    }

    return false;
}

bool CNetAddr::SetI2P(const std::string& addr)
{
    // I2P addresses that we support consist of 52 base32 characters + ".b32.i2p".
    static constexpr size_t b32_len{52};
    static const char* suffix{".b32.i2p"};
    static constexpr size_t suffix_len{8};

    if (addr.size() != b32_len + suffix_len || ToLower(addr.substr(b32_len)) != suffix) {
        return false;
    }

    // Remove the ".b32.i2p" suffix and pad to a multiple of 8 chars, so DecodeBase32()
    // can decode it.
    const std::string b32_padded = addr.substr(0, b32_len) + "====";

    bool invalid;
    const auto& address_bytes = DecodeBase32(b32_padded.c_str(), &invalid);

    if (invalid || address_bytes.size() != ADDR_I2P_SIZE) {
        return false;
    }

    m_net = NET_I2P;
    m_addr.assign(address_bytes.begin(), address_bytes.end());

    return true;
}

CNetAddr::CNetAddr(const struct in_addr& ipv4Addr)
{
    m_net = NET_IPV4;
    const uint8_t* ptr = reinterpret_cast<const uint8_t*>(&ipv4Addr);
    m_addr.assign(ptr, ptr + ADDR_IPV4_SIZE);
}

CNetAddr::CNetAddr(const struct in6_addr& ipv6Addr, const uint32_t scope)
{
    SetLegacyIPv6(Span<const uint8_t>(reinterpret_cast<const uint8_t*>(&ipv6Addr), sizeof(ipv6Addr)));
    m_scope_id = scope;
}

bool CNetAddr::IsBindAny() const
{
    if (!IsIPv4() && !IsIPv6()) {
        return false;
    }
    return std::all_of(m_addr.begin(), m_addr.end(), [](uint8_t b) { return b == 0; });
}

bool CNetAddr::IsIPv4() const { return m_net == NET_IPV4; }

bool CNetAddr::IsIPv6() const { return m_net == NET_IPV6; }

bool CNetAddr::IsRFC1918() const
{
    return IsIPv4() && (
        m_addr[0] == 10 ||
        (m_addr[0] == 192 && m_addr[1] == 168) ||
        (m_addr[0] == 172 && m_addr[1] >= 16 && m_addr[1] <= 31));
}

bool CNetAddr::IsRFC2544() const
{
    return IsIPv4() && m_addr[0] == 198 && (m_addr[1] == 18 || m_addr[1] == 19);
}

bool CNetAddr::IsRFC3927() const
{
    return IsIPv4() && HasPrefix(m_addr, std::array<uint8_t, 2>{169, 254});
}

bool CNetAddr::IsRFC6598() const
{
    return IsIPv4() && m_addr[0] == 100 && m_addr[1] >= 64 && m_addr[1] <= 127;
}

bool CNetAddr::IsRFC5737() const
{
    return IsIPv4() && (HasPrefix(m_addr, std::array<uint8_t, 3>{192, 0, 2}) ||
                        HasPrefix(m_addr, std::array<uint8_t, 3>{198, 51, 100}) ||
                        HasPrefix(m_addr, std::array<uint8_t, 3>{203, 0, 113}));
}

bool CNetAddr::IsRFC3849() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x0D, 0xB8});
}

bool CNetAddr::IsRFC3964() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 2>{0x20, 0x02});
}

bool CNetAddr::IsRFC6052() const
{
    return IsIPv6() &&
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x64, 0xFF, 0x9B, 0x00, 0x00,
                                                     0x00, 0x00, 0x00, 0x00, 0x00, 0x00});
}

bool CNetAddr::IsRFC4380() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x00, 0x00});
}

bool CNetAddr::IsRFC4862() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 8>{0xFE, 0x80, 0x00, 0x00,
                                                                0x00, 0x00, 0x00, 0x00});
}

bool CNetAddr::IsRFC4193() const
{
    return IsIPv6() && (m_addr[0] & 0xFE) == 0xFC;
}

bool CNetAddr::IsRFC6145() const
{
    return IsIPv6() &&
           HasPrefix(m_addr, std::array<uint8_t, 12>{0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
                                                     0x00, 0x00, 0xFF, 0xFF, 0x00, 0x00});
}

bool CNetAddr::IsRFC4843() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
           (m_addr[3] & 0xF0) == 0x10;
}

bool CNetAddr::IsRFC7343() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 3>{0x20, 0x01, 0x00}) &&
           (m_addr[3] & 0xF0) == 0x20;
}

bool CNetAddr::IsHeNet() const
{
    return IsIPv6() && HasPrefix(m_addr, std::array<uint8_t, 4>{0x20, 0x01, 0x04, 0x70});
}

/**
 * Check whether this object represents a TOR address.
 * @see CNetAddr::SetSpecial(const std::string &)
 */
bool CNetAddr::IsTor() const { return m_net == NET_ONION; }

/**
 * Check whether this object represents an I2P address.
 */
bool CNetAddr::IsI2P() const { return m_net == NET_I2P; }

/**
 * Check whether this object represents a CJDNS address.
 */
bool CNetAddr::IsCJDNS() const { return m_net == NET_CJDNS; }

bool CNetAddr::IsLocal() const
{
    // IPv4 loopback (127.0.0.0/8 or 0.0.0.0/8)
    if (IsIPv4() && (m_addr[0] == 127 || m_addr[0] == 0)) {
        return true;
    }

    // IPv6 loopback (::1/128)
    static const unsigned char pchLocal[16] = {0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,1};
    if (IsIPv6() && memcmp(m_addr.data(), pchLocal, sizeof(pchLocal)) == 0) {
        return true;
    }

    return false;
}

/**
 * @returns Whether or not this network address is a valid address that @a could
 *          be used to refer to an actual host.
 *
 * @note A valid address may or may not be publicly routable on the global
 *       internet. As in, the set of valid addresses is a superset of the set of
 *       publicly routable addresses.
 *
 * @see CNetAddr::IsRoutable()
 */
bool CNetAddr::IsValid() const
{
    // unspecified IPv6 address (::/128)
    unsigned char ipNone6[16] = {};
    if (IsIPv6() && memcmp(m_addr.data(), ipNone6, sizeof(ipNone6)) == 0) {
        return false;
    }

    // CJDNS addresses always start with 0xfc
    if (IsCJDNS() && (m_addr[0] != 0xFC)) {
        return false;
    }

    // documentation IPv6 address
    if (IsRFC3849())
        return false;

    if (IsInternal())
        return false;

    if (IsIPv4()) {
        const uint32_t addr = ReadBE32(m_addr.data());
        if (addr == INADDR_ANY || addr == INADDR_NONE) {
            return false;
        }
    }

    return true;
}

/**
 * @returns Whether or not this network address is publicly routable on the
 *          global internet.
 *
 * @note A routable address is always valid. As in, the set of routable addresses
 *       is a subset of the set of valid addresses.
 *
 * @see CNetAddr::IsValid()
 */
bool CNetAddr::IsRoutable() const
{
    return IsValid() && !(IsRFC1918() || IsRFC2544() || IsRFC3927() || IsRFC4862() || IsRFC6598() || IsRFC5737() || (IsRFC4193() && !IsTor()) || IsRFC4843() || IsRFC7343() || IsLocal() || IsInternal());
}

/**
 * @returns Whether or not this is a dummy address that represents a name.
 *
 * @see CNetAddr::SetInternal(const std::string &)
 */
bool CNetAddr::IsInternal() const
{
   return m_net == NET_INTERNAL;
}

bool CNetAddr::IsAddrV1Compatible() const
{
    switch (m_net) {
    case NET_IPV4:
    case NET_IPV6:
    case NET_INTERNAL:
        return true;
    case NET_ONION:
    case NET_I2P:
    case NET_CJDNS:
        return false;
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
        assert(false);
    } // no default case, so the compiler can warn about missing cases

    assert(false);
}

enum Network CNetAddr::GetNetwork() const
{
    if (IsInternal())
        return NET_INTERNAL;

    if (!IsRoutable())
        return NET_UNROUTABLE;

    return m_net;
}

static std::string IPv4ToString(Span<const uint8_t> a)
{
    return strprintf("%u.%u.%u.%u", a[0], a[1], a[2], a[3]);
}

// Return an IPv6 address text representation with zero compression as described in RFC 5952
// ("A Recommendation for IPv6 Address Text Representation").
static std::string IPv6ToString(Span<const uint8_t> a, uint32_t scope_id)
{
    assert(a.size() == ADDR_IPV6_SIZE);
    const std::array groups{
        ReadBE16(&a[0]),
        ReadBE16(&a[2]),
        ReadBE16(&a[4]),
        ReadBE16(&a[6]),
        ReadBE16(&a[8]),
        ReadBE16(&a[10]),
        ReadBE16(&a[12]),
        ReadBE16(&a[14]),
    };

    // The zero compression implementation is inspired by Rust's std::net::Ipv6Addr, see
    // https://github.com/rust-lang/rust/blob/cc4103089f40a163f6d143f06359cba7043da29b/library/std/src/net/ip.rs#L1635-L1683
    struct ZeroSpan {
        size_t start_index{0};
        size_t len{0};
    };

    // Find longest sequence of consecutive all-zero fields. Use first zero sequence if two or more
    // zero sequences of equal length are found.
    ZeroSpan longest, current;
    for (size_t i{0}; i < groups.size(); ++i) {
        if (groups[i] != 0) {
            current = {i + 1, 0};
            continue;
        }
        current.len += 1;
        if (current.len > longest.len) {
            longest = current;
        }
    }

    std::string r;
    r.reserve(39);
    for (size_t i{0}; i < groups.size(); ++i) {
        // Replace the longest sequence of consecutive all-zero fields with two colons ("::").
        if (longest.len >= 2 && i >= longest.start_index && i < longest.start_index + longest.len) {
            if (i == longest.start_index) {
                r += "::";
            }
            continue;
        }
        r += strprintf("%s%x", ((!r.empty() && r.back() != ':') ? ":" : ""), groups[i]);
    }

    if (scope_id != 0) {
        r += strprintf("%%%u", scope_id);
    }

    return r;
}

std::string CNetAddr::ToStringIP() const
{
    switch (m_net) {
    case NET_IPV4:
        return IPv4ToString(m_addr);
    case NET_IPV6: {
        return IPv6ToString(m_addr, m_scope_id);
    }
    case NET_ONION:
        switch (m_addr.size()) {
        case ADDR_TORV2_SIZE:
            return EncodeBase32(m_addr) + ".onion";
        case ADDR_TORV3_SIZE: {

            uint8_t checksum[torv3::CHECKSUM_LEN];
            torv3::Checksum(m_addr, checksum);

            // TORv3 onion_address = base32(PUBKEY | CHECKSUM | VERSION) + ".onion"
            prevector<torv3::TOTAL_LEN, uint8_t> address{m_addr.begin(), m_addr.end()};
            address.insert(address.end(), checksum, checksum + torv3::CHECKSUM_LEN);
            address.insert(address.end(), torv3::VERSION, torv3::VERSION + sizeof(torv3::VERSION));

            return EncodeBase32(address) + ".onion";
        }
        default:
            assert(false);
        }
    case NET_I2P:
        return EncodeBase32(m_addr, false /* don't pad with = */) + ".b32.i2p";
    case NET_CJDNS:
        return IPv6ToString(m_addr, 0);
    case NET_INTERNAL:
        return EncodeBase32(m_addr) + ".internal";
    case NET_UNROUTABLE: // m_net is never and should not be set to NET_UNROUTABLE
    case NET_MAX:        // m_net is never and should not be set to NET_MAX
        assert(false);
    } // no default case, so the compiler can warn about missing cases

    assert(false);
}

std::string CNetAddr::ToString() const
{
    return ToStringIP();
}

bool operator==(const CNetAddr& a, const CNetAddr& b)
{
    return a.m_net == b.m_net && a.m_addr == b.m_addr;
}

bool operator<(const CNetAddr& a, const CNetAddr& b)
{
    return std::tie(a.m_net, a.m_addr) < std::tie(b.m_net, b.m_addr);
}

/**
 * Try to get our IPv4 address.
 *
 * @param[out] pipv4Addr The in_addr struct to which to copy.
 *
 * @returns Whether or not the operation was successful, in particular, whether
 *          or not our address was an IPv4 address.
 *
 * @see CNetAddr::IsIPv4()
 */
bool CNetAddr::GetInAddr(struct in_addr* pipv4Addr) const
{
    if (!IsIPv4())
        return false;
    assert(sizeof(*pipv4Addr) == m_addr.size());
    memcpy(pipv4Addr, m_addr.data(), m_addr.size());
    return true;
}

/**
 * Try to get our IPv6 address.
 *
 * @param[out] pipv6Addr The in6_addr struct to which to copy.
 *
 * @returns Whether or not the operation was successful, in particular, whether
 *          or not our address was an IPv6 address.
 *
 * @see CNetAddr::IsIPv6()
 */
bool CNetAddr::GetIn6Addr(struct in6_addr* pipv6Addr) const
{
    if (!IsIPv6()) {
        return false;
    }
    assert(sizeof(*pipv6Addr) == m_addr.size());
    memcpy(pipv6Addr, m_addr.data(), m_addr.size());
    return true;
}

bool CNetAddr::HasLinkedIPv4() const
{
    return IsRoutable() && (IsIPv4() || IsRFC6145() || IsRFC6052() || IsRFC3964() || IsRFC4380());
}

uint32_t CNetAddr::GetLinkedIPv4() const
{
    if (IsIPv4()) {
        return ReadBE32(m_addr.data());
    } else if (IsRFC6052() || IsRFC6145()) {
        // mapped IPv4, SIIT translated IPv4: the IPv4 address is the last 4 bytes of the address
        return ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
    } else if (IsRFC3964()) {
        // 6to4 tunneled IPv4: the IPv4 address is in bytes 2-6
        return ReadBE32(MakeSpan(m_addr).subspan(2, ADDR_IPV4_SIZE).data());
    } else if (IsRFC4380()) {
        // Teredo tunneled IPv4: the IPv4 address is in the last 4 bytes of the address, but bitflipped
        return ~ReadBE32(MakeSpan(m_addr).last(ADDR_IPV4_SIZE).data());
    }
    assert(false);
}

Network CNetAddr::GetNetClass() const
{
    // Make sure that if we return NET_IPV6, then IsIPv6() is true. The callers expect that.

    // Check for "internal" first because such addresses are also !IsRoutable()
    // and we don't want to return NET_UNROUTABLE in that case.
    if (IsInternal()) {
        return NET_INTERNAL;
    }
    if (!IsRoutable()) {
        return NET_UNROUTABLE;
    }
    if (HasLinkedIPv4()) {
        return NET_IPV4;
    }
    return m_net;
}

uint32_t CNetAddr::GetMappedAS(const std::vector<bool> &asmap) const {
    uint32_t net_class = GetNetClass();
    if (asmap.size() == 0 || (net_class != NET_IPV4 && net_class != NET_IPV6)) {
        return 0; // Indicates not found, safe because AS0 is reserved per RFC7607.
    }
    std::vector<bool> ip_bits(128);
    if (HasLinkedIPv4()) {
        // For lookup, treat as if it was just an IPv4 address (IPV4_IN_IPV6_PREFIX + IPv4 bits)
        for (int8_t byte_i = 0; byte_i < 12; ++byte_i) {
            for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
                ip_bits[byte_i * 8 + bit_i] = (IPV4_IN_IPV6_PREFIX[byte_i] >> (7 - bit_i)) & 1;
            }
        }
        uint32_t ipv4 = GetLinkedIPv4();
        for (int i = 0; i < 32; ++i) {
            ip_bits[96 + i] = (ipv4 >> (31 - i)) & 1;
        }
    } else {
        // Use all 128 bits of the IPv6 address otherwise
        assert(IsIPv6());
        for (int8_t byte_i = 0; byte_i < 16; ++byte_i) {
            uint8_t cur_byte = m_addr[byte_i];
            for (uint8_t bit_i = 0; bit_i < 8; ++bit_i) {
                ip_bits[byte_i * 8 + bit_i] = (cur_byte >> (7 - bit_i)) & 1;
            }
        }
    }
    uint32_t mapped_as = Interpret(asmap, ip_bits);
    return mapped_as;
}

/**
 * Get the canonical identifier of our network group
 *
 * The groups are assigned in a way where it should be costly for an attacker to
 * obtain addresses with many different group identifiers, even if it is cheap
 * to obtain addresses with the same identifier.
 *
 * @note No two connections will be attempted to addresses with the same network
 *       group.
 */
std::vector<unsigned char> CNetAddr::GetGroup(const std::vector<bool> &asmap) const
{
    std::vector<unsigned char> vchRet;
    uint32_t net_class = GetNetClass();
    // If non-empty asmap is supplied and the address is IPv4/IPv6,
    // return ASN to be used for bucketing.
    uint32_t asn = GetMappedAS(asmap);
    if (asn != 0) { // Either asmap was empty, or address has non-asmappable net class (e.g. TOR).
        vchRet.push_back(NET_IPV6); // IPv4 and IPv6 with same ASN should be in the same bucket
        for (int i = 0; i < 4; i++) {
            vchRet.push_back((asn >> (8 * i)) & 0xFF);
        }
        return vchRet;
    }

    vchRet.push_back(net_class);
    int nBits{0};

    if (IsLocal()) {
        // all local addresses belong to the same group
    } else if (IsInternal()) {
        // all internal-usage addresses get their own group
        nBits = ADDR_INTERNAL_SIZE * 8;
    } else if (!IsRoutable()) {
        // all other unroutable addresses belong to the same group
    } else if (HasLinkedIPv4()) {
        // IPv4 addresses (and mapped IPv4 addresses) use /16 groups
        uint32_t ipv4 = GetLinkedIPv4();
        vchRet.push_back((ipv4 >> 24) & 0xFF);
        vchRet.push_back((ipv4 >> 16) & 0xFF);
        return vchRet;
    } else if (IsTor() || IsI2P() || IsCJDNS()) {
        nBits = 4;
    } else if (IsHeNet()) {
        // for he.net, use /36 groups
        nBits = 36;
    } else {
        // for the rest of the IPv6 network, use /32 groups
        nBits = 32;
    }

    // Push our address onto vchRet.
    const size_t num_bytes = nBits / 8;
    vchRet.insert(vchRet.end(), m_addr.begin(), m_addr.begin() + num_bytes);
    nBits %= 8;
    // ...for the last byte, push nBits and for the rest of the byte push 1's
    if (nBits > 0) {
        assert(num_bytes < m_addr.size());
        vchRet.push_back(m_addr[num_bytes] | ((1 << (8 - nBits)) - 1));
    }

    return vchRet;
}

std::vector<unsigned char> CNetAddr::GetAddrBytes() const
{
    if (IsAddrV1Compatible()) {
        uint8_t serialized[V1_SERIALIZATION_SIZE];
        SerializeV1Array(serialized);
        return {std::begin(serialized), std::end(serialized)};
    }
    return std::vector<unsigned char>(m_addr.begin(), m_addr.end());
}

uint64_t CNetAddr::GetHash() const
{
    uint256 hash = Hash(m_addr);
    uint64_t nRet;
    memcpy(&nRet, &hash, sizeof(nRet));
    return nRet;
}

// private extensions to enum Network, only returned by GetExtNetwork,
// and only used in GetReachabilityFrom
static const int NET_UNKNOWN = NET_MAX + 0;
static const int NET_TEREDO  = NET_MAX + 1;
int static GetExtNetwork(const CNetAddr *addr)
{
    if (addr == nullptr)
        return NET_UNKNOWN;
    if (addr->IsRFC4380())
        return NET_TEREDO;
    return addr->GetNetwork();
}

/** Calculates a metric for how reachable (*this) is from a given partner */
int CNetAddr::GetReachabilityFrom(const CNetAddr *paddrPartner) const
{
    enum Reachability {
        REACH_UNREACHABLE,
        REACH_DEFAULT,
        REACH_TEREDO,
        REACH_IPV6_WEAK,
        REACH_IPV4,
        REACH_IPV6_STRONG,
        REACH_PRIVATE
    };

    if (!IsRoutable() || IsInternal())
        return REACH_UNREACHABLE;

    int ourNet = GetExtNetwork(this);
    int theirNet = GetExtNetwork(paddrPartner);
    bool fTunnel = IsRFC3964() || IsRFC6052() || IsRFC6145();

    switch(theirNet) {
    case NET_IPV4:
        switch(ourNet) {
        default:       return REACH_DEFAULT;
        case NET_IPV4: return REACH_IPV4;
        }
    case NET_IPV6:
        switch(ourNet) {
        default:         return REACH_DEFAULT;
        case NET_TEREDO: return REACH_TEREDO;
        case NET_IPV4:   return REACH_IPV4;
        case NET_IPV6:   return fTunnel ? REACH_IPV6_WEAK : REACH_IPV6_STRONG; // only prefer giving our IPv6 address if it's not tunnelled
        }
    case NET_ONION:
        switch(ourNet) {
        default:         return REACH_DEFAULT;
        case NET_IPV4:   return REACH_IPV4; // Tor users can connect to IPv4 as well
        case NET_ONION:    return REACH_PRIVATE;
        }
    case NET_I2P:
        switch (ourNet) {
        case NET_I2P: return REACH_PRIVATE;
        default: return REACH_DEFAULT;
        }
    case NET_TEREDO:
        switch(ourNet) {
        default:          return REACH_DEFAULT;
        case NET_TEREDO:  return REACH_TEREDO;
        case NET_IPV6:    return REACH_IPV6_WEAK;
        case NET_IPV4:    return REACH_IPV4;
        }
    case NET_UNKNOWN:
    case NET_UNROUTABLE:
    default:
        switch(ourNet) {
        default:          return REACH_DEFAULT;
        case NET_TEREDO:  return REACH_TEREDO;
        case NET_IPV6:    return REACH_IPV6_WEAK;
        case NET_IPV4:    return REACH_IPV4;
        case NET_ONION:     return REACH_PRIVATE; // either from Tor, or don't care about our address
        }
    }
}

CService::CService() : port(0)
{
}

CService::CService(const CNetAddr& cip, uint16_t portIn) : CNetAddr(cip), port(portIn)
{
}

CService::CService(const struct in_addr& ipv4Addr, uint16_t portIn) : CNetAddr(ipv4Addr), port(portIn)
{
}

CService::CService(const struct in6_addr& ipv6Addr, uint16_t portIn) : CNetAddr(ipv6Addr), port(portIn)
{
}

CService::CService(const struct sockaddr_in& addr) : CNetAddr(addr.sin_addr), port(ntohs(addr.sin_port))
{
    assert(addr.sin_family == AF_INET);
}

CService::CService(const struct sockaddr_in6 &addr) : CNetAddr(addr.sin6_addr, addr.sin6_scope_id), port(ntohs(addr.sin6_port))
{
   assert(addr.sin6_family == AF_INET6);
}

bool CService::SetSockAddr(const struct sockaddr *paddr)
{
    switch (paddr->sa_family) {
    case AF_INET:
        *this = CService(*(const struct sockaddr_in*)paddr);
        return true;
    case AF_INET6:
        *this = CService(*(const struct sockaddr_in6*)paddr);
        return true;
    default:
        return false;
    }
}

uint16_t CService::GetPort() const
{
    return port;
}

bool operator==(const CService& a, const CService& b)
{
    return static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port == b.port;
}

bool operator<(const CService& a, const CService& b)
{
    return static_cast<CNetAddr>(a) < static_cast<CNetAddr>(b) || (static_cast<CNetAddr>(a) == static_cast<CNetAddr>(b) && a.port < b.port);
}

/**
 * Obtain the IPv4/6 socket address this represents.
 *
 * @param[out] paddr The obtained socket address.
 * @param[in,out] addrlen The size, in bytes, of the address structure pointed
 *                        to by paddr. The value that's pointed to by this
 *                        parameter might change after calling this function if
 *                        the size of the corresponding address structure
 *                        changed.
 *
 * @returns Whether or not the operation was successful.
 */
bool CService::GetSockAddr(struct sockaddr* paddr, socklen_t *addrlen) const
{
    if (IsIPv4()) {
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in))
            return false;
        *addrlen = sizeof(struct sockaddr_in);
        struct sockaddr_in *paddrin = (struct sockaddr_in*)paddr;
        memset(paddrin, 0, *addrlen);
        if (!GetInAddr(&paddrin->sin_addr))
            return false;
        paddrin->sin_family = AF_INET;
        paddrin->sin_port = htons(port);
        return true;
    }
    if (IsIPv6()) {
        if (*addrlen < (socklen_t)sizeof(struct sockaddr_in6))
            return false;
        *addrlen = sizeof(struct sockaddr_in6);
        struct sockaddr_in6 *paddrin6 = (struct sockaddr_in6*)paddr;
        memset(paddrin6, 0, *addrlen);
        if (!GetIn6Addr(&paddrin6->sin6_addr))
            return false;
        paddrin6->sin6_scope_id = m_scope_id;
        paddrin6->sin6_family = AF_INET6;
        paddrin6->sin6_port = htons(port);
        return true;
    }
    return false;
}

/**
 * @returns An identifier unique to this service's address and port number.
 */
std::vector<unsigned char> CService::GetKey() const
{
    auto key = GetAddrBytes();
    key.push_back(port / 0x100); // most significant byte of our port
    key.push_back(port & 0x0FF); // least significant byte of our port
    return key;
}

std::string CService::ToStringPort() const
{
    return strprintf("%u", port);
}

std::string CService::ToStringIPPort() const
{
    if (IsIPv4() || IsTor() || IsI2P() || IsInternal()) {
        return ToStringIP() + ":" + ToStringPort();
    } else {
        return "[" + ToStringIP() + "]:" + ToStringPort();
    }
}

std::string CService::ToString() const
{
    return ToStringIPPort();
}

CSubNet::CSubNet():
    valid(false)
{
    memset(netmask, 0, sizeof(netmask));
}

CSubNet::CSubNet(const CNetAddr& addr, uint8_t mask) : CSubNet()
{
    valid = (addr.IsIPv4() && mask <= ADDR_IPV4_SIZE * 8) ||
            (addr.IsIPv6() && mask <= ADDR_IPV6_SIZE * 8);
    if (!valid) {
        return;
    }

    assert(mask <= sizeof(netmask) * 8);

    network = addr;

    uint8_t n = mask;
    for (size_t i = 0; i < network.m_addr.size(); ++i) {
        const uint8_t bits = n < 8 ? n : 8;
        netmask[i] = (uint8_t)((uint8_t)0xFF << (8 - bits)); // Set first bits.
        network.m_addr[i] &= netmask[i]; // Normalize network according to netmask.
        n -= bits;
    }
}

/**
 * @returns The number of 1-bits in the prefix of the specified subnet mask. If
 *          the specified subnet mask is not a valid one, -1.
 */
static inline int NetmaskBits(uint8_t x)
{
    switch(x) {
    case 0x00: return 0;
    case 0x80: return 1;
    case 0xc0: return 2;
    case 0xe0: return 3;
    case 0xf0: return 4;
    case 0xf8: return 5;
    case 0xfc: return 6;
    case 0xfe: return 7;
    case 0xff: return 8;
    default: return -1;
    }
}

CSubNet::CSubNet(const CNetAddr& addr, const CNetAddr& mask) : CSubNet()
{
    valid = (addr.IsIPv4() || addr.IsIPv6()) && addr.m_net == mask.m_net;
    if (!valid) {
        return;
    }
    // Check if `mask` contains 1-bits after 0-bits (which is an invalid netmask).
    bool zeros_found = false;
    for (auto b : mask.m_addr) {
        const int num_bits = NetmaskBits(b);
        if (num_bits == -1 || (zeros_found && num_bits != 0)) {
            valid = false;
            return;
        }
        if (num_bits < 8) {
            zeros_found = true;
        }
    }

    assert(mask.m_addr.size() <= sizeof(netmask));

    memcpy(netmask, mask.m_addr.data(), mask.m_addr.size());

    network = addr;

    // Normalize network according to netmask
    for (size_t x = 0; x < network.m_addr.size(); ++x) {
        network.m_addr[x] &= netmask[x];
    }
}

CSubNet::CSubNet(const CNetAddr& addr) : CSubNet()
{
    switch (addr.m_net) {
    case NET_IPV4:
    case NET_IPV6:
        valid = true;
        assert(addr.m_addr.size() <= sizeof(netmask));
        memset(netmask, 0xFF, addr.m_addr.size());
        break;
    case NET_ONION:
    case NET_I2P:
    case NET_CJDNS:
        valid = true;
        break;
    case NET_INTERNAL:
    case NET_UNROUTABLE:
    case NET_MAX:
        return;
    }

    network = addr;
}

/**
 * @returns True if this subnet is valid, the specified address is valid, and
 *          the specified address belongs in this subnet.
 */
bool CSubNet::Match(const CNetAddr &addr) const
{
    if (!valid || !addr.IsValid() || network.m_net != addr.m_net)
        return false;

    switch (network.m_net) {
    case NET_IPV4:
    case NET_IPV6:
        break;
    case NET_ONION:
    case NET_I2P:
    case NET_CJDNS:
    case NET_INTERNAL:
        return addr == network;
    case NET_UNROUTABLE:
    case NET_MAX:
        return false;
    }

    assert(network.m_addr.size() == addr.m_addr.size());
    for (size_t x = 0; x < addr.m_addr.size(); ++x) {
        if ((addr.m_addr[x] & netmask[x]) != network.m_addr[x]) {
            return false;
        }
    }
    return true;
}

std::string CSubNet::ToString() const
{
    std::string suffix;

    switch (network.m_net) {
    case NET_IPV4:
    case NET_IPV6: {
        assert(network.m_addr.size() <= sizeof(netmask));

        uint8_t cidr = 0;

        for (size_t i = 0; i < network.m_addr.size(); ++i) {
            if (netmask[i] == 0x00) {
                break;
            }
            cidr += NetmaskBits(netmask[i]);
        }

        suffix = strprintf("/%u", cidr);
        break;
    }
    case NET_ONION:
    case NET_I2P:
    case NET_CJDNS:
    case NET_INTERNAL:
    case NET_UNROUTABLE:
    case NET_MAX:
        break;
    }

    return network.ToString() + suffix;
}

bool CSubNet::IsValid() const
{
    return valid;
}

bool CSubNet::SanityCheck() const
{
    switch (network.m_net) {
    case NET_IPV4:
    case NET_IPV6:
        break;
    case NET_ONION:
    case NET_I2P:
    case NET_CJDNS:
        return true;
    case NET_INTERNAL:
    case NET_UNROUTABLE:
    case NET_MAX:
        return false;
    }

    for (size_t x = 0; x < network.m_addr.size(); ++x) {
        if (network.m_addr[x] & ~netmask[x]) return false;
    }

    return true;
}

bool operator==(const CSubNet& a, const CSubNet& b)
{
    return a.valid == b.valid && a.network == b.network && !memcmp(a.netmask, b.netmask, 16);
}

bool operator<(const CSubNet& a, const CSubNet& b)
{
    return (a.network < b.network || (a.network == b.network && memcmp(a.netmask, b.netmask, 16) < 0));
}

bool SanityCheckASMap(const std::vector<bool>& asmap)
{
    return SanityCheckASMap(asmap, 128); // For IP address lookups, the input is 128 bits
}