aboutsummaryrefslogtreecommitdiff
path: root/src/net.cpp
blob: c15a4692e169b0ff29035f3ed2327da10785e7dd (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#if defined(HAVE_CONFIG_H)
#include "config/bitcoin-config.h"
#endif

#include "net.h"

#include "addrman.h"
#include "chainparams.h"
#include "clientversion.h"
#include "consensus/consensus.h"
#include "crypto/common.h"
#include "hash.h"
#include "primitives/transaction.h"
#include "scheduler.h"
#include "ui_interface.h"
#include "utilstrencodings.h"

#ifdef WIN32
#include <string.h>
#else
#include <fcntl.h>
#endif

#ifdef USE_UPNP
#include <miniupnpc/miniupnpc.h>
#include <miniupnpc/miniwget.h>
#include <miniupnpc/upnpcommands.h>
#include <miniupnpc/upnperrors.h>
#endif

#include <boost/filesystem.hpp>
#include <boost/thread.hpp>

#include <math.h>

// Dump addresses to peers.dat and banlist.dat every 15 minutes (900s)
#define DUMP_ADDRESSES_INTERVAL 900

#if !defined(HAVE_MSG_NOSIGNAL) && !defined(MSG_NOSIGNAL)
#define MSG_NOSIGNAL 0
#endif

// Fix for ancient MinGW versions, that don't have defined these in ws2tcpip.h.
// Todo: Can be removed when our pull-tester is upgraded to a modern MinGW version.
#ifdef WIN32
#ifndef PROTECTION_LEVEL_UNRESTRICTED
#define PROTECTION_LEVEL_UNRESTRICTED 10
#endif
#ifndef IPV6_PROTECTION_LEVEL
#define IPV6_PROTECTION_LEVEL 23
#endif
#endif


namespace {
    const int MAX_OUTBOUND_CONNECTIONS = 8;

    struct ListenSocket {
        SOCKET socket;
        bool whitelisted;

        ListenSocket(SOCKET socket, bool whitelisted) : socket(socket), whitelisted(whitelisted) {}
    };
}

const static std::string NET_MESSAGE_COMMAND_OTHER = "*other*";

//
// Global state variables
//
bool fDiscover = true;
bool fListen = true;
uint64_t nLocalServices = NODE_NETWORK;
CCriticalSection cs_mapLocalHost;
std::map<CNetAddr, LocalServiceInfo> mapLocalHost;
static bool vfLimited[NET_MAX] = {};
static CNode* pnodeLocalHost = NULL;
uint64_t nLocalHostNonce = 0;
static std::vector<ListenSocket> vhListenSocket;
CAddrMan addrman;
int nMaxConnections = DEFAULT_MAX_PEER_CONNECTIONS;
bool fAddressesInitialized = false;
std::string strSubVersion;

std::vector<CNode*> vNodes;
CCriticalSection cs_vNodes;
std::map<uint256, CTransaction> mapRelay;
std::deque<std::pair<int64_t, uint256> > vRelayExpiration;
CCriticalSection cs_mapRelay;
limitedmap<uint256, int64_t> mapAlreadyAskedFor(MAX_INV_SZ);

static std::deque<std::string> vOneShots;
CCriticalSection cs_vOneShots;

std::vector<std::string> vAddedNodes;
CCriticalSection cs_vAddedNodes;

NodeId nLastNodeId = 0;
CCriticalSection cs_nLastNodeId;

static CSemaphore *semOutbound = NULL;
boost::condition_variable messageHandlerCondition;

// Signals for message handling
static CNodeSignals g_signals;
CNodeSignals& GetNodeSignals() { return g_signals; }

void AddOneShot(const std::string& strDest)
{
    LOCK(cs_vOneShots);
    vOneShots.push_back(strDest);
}

unsigned short GetListenPort()
{
    return (unsigned short)(GetArg("-port", Params().GetDefaultPort()));
}

// find 'best' local address for a particular peer
bool GetLocal(CService& addr, const CNetAddr *paddrPeer)
{
    if (!fListen)
        return false;

    int nBestScore = -1;
    int nBestReachability = -1;
    {
        LOCK(cs_mapLocalHost);
        for (std::map<CNetAddr, LocalServiceInfo>::iterator it = mapLocalHost.begin(); it != mapLocalHost.end(); it++)
        {
            int nScore = (*it).second.nScore;
            int nReachability = (*it).first.GetReachabilityFrom(paddrPeer);
            if (nReachability > nBestReachability || (nReachability == nBestReachability && nScore > nBestScore))
            {
                addr = CService((*it).first, (*it).second.nPort);
                nBestReachability = nReachability;
                nBestScore = nScore;
            }
        }
    }
    return nBestScore >= 0;
}

//! Convert the pnSeeds6 array into usable address objects.
static std::vector<CAddress> convertSeed6(const std::vector<SeedSpec6> &vSeedsIn)
{
    // It'll only connect to one or two seed nodes because once it connects,
    // it'll get a pile of addresses with newer timestamps.
    // Seed nodes are given a random 'last seen time' of between one and two
    // weeks ago.
    const int64_t nOneWeek = 7*24*60*60;
    std::vector<CAddress> vSeedsOut;
    vSeedsOut.reserve(vSeedsIn.size());
    for (std::vector<SeedSpec6>::const_iterator i(vSeedsIn.begin()); i != vSeedsIn.end(); ++i)
    {
        struct in6_addr ip;
        memcpy(&ip, i->addr, sizeof(ip));
        CAddress addr(CService(ip, i->port));
        addr.nTime = GetTime() - GetRand(nOneWeek) - nOneWeek;
        vSeedsOut.push_back(addr);
    }
    return vSeedsOut;
}

// get best local address for a particular peer as a CAddress
// Otherwise, return the unroutable 0.0.0.0 but filled in with
// the normal parameters, since the IP may be changed to a useful
// one by discovery.
CAddress GetLocalAddress(const CNetAddr *paddrPeer)
{
    CAddress ret(CService("0.0.0.0",GetListenPort()),0);
    CService addr;
    if (GetLocal(addr, paddrPeer))
    {
        ret = CAddress(addr);
    }
    ret.nServices = nLocalServices;
    ret.nTime = GetAdjustedTime();
    return ret;
}

int GetnScore(const CService& addr)
{
    LOCK(cs_mapLocalHost);
    if (mapLocalHost.count(addr) == LOCAL_NONE)
        return 0;
    return mapLocalHost[addr].nScore;
}

// Is our peer's addrLocal potentially useful as an external IP source?
bool IsPeerAddrLocalGood(CNode *pnode)
{
    return fDiscover && pnode->addr.IsRoutable() && pnode->addrLocal.IsRoutable() &&
           !IsLimited(pnode->addrLocal.GetNetwork());
}

// pushes our own address to a peer
void AdvertiseLocal(CNode *pnode)
{
    if (fListen && pnode->fSuccessfullyConnected)
    {
        CAddress addrLocal = GetLocalAddress(&pnode->addr);
        // If discovery is enabled, sometimes give our peer the address it
        // tells us that it sees us as in case it has a better idea of our
        // address than we do.
        if (IsPeerAddrLocalGood(pnode) && (!addrLocal.IsRoutable() ||
             GetRand((GetnScore(addrLocal) > LOCAL_MANUAL) ? 8:2) == 0))
        {
            addrLocal.SetIP(pnode->addrLocal);
        }
        if (addrLocal.IsRoutable())
        {
            LogPrintf("AdvertiseLocal: advertising address %s\n", addrLocal.ToString());
            pnode->PushAddress(addrLocal);
        }
    }
}

// learn a new local address
bool AddLocal(const CService& addr, int nScore)
{
    if (!addr.IsRoutable())
        return false;

    if (!fDiscover && nScore < LOCAL_MANUAL)
        return false;

    if (IsLimited(addr))
        return false;

    LogPrintf("AddLocal(%s,%i)\n", addr.ToString(), nScore);

    {
        LOCK(cs_mapLocalHost);
        bool fAlready = mapLocalHost.count(addr) > 0;
        LocalServiceInfo &info = mapLocalHost[addr];
        if (!fAlready || nScore >= info.nScore) {
            info.nScore = nScore + (fAlready ? 1 : 0);
            info.nPort = addr.GetPort();
        }
    }

    return true;
}

bool AddLocal(const CNetAddr &addr, int nScore)
{
    return AddLocal(CService(addr, GetListenPort()), nScore);
}

bool RemoveLocal(const CService& addr)
{
    LOCK(cs_mapLocalHost);
    LogPrintf("RemoveLocal(%s)\n", addr.ToString());
    mapLocalHost.erase(addr);
    return true;
}

/** Make a particular network entirely off-limits (no automatic connects to it) */
void SetLimited(enum Network net, bool fLimited)
{
    if (net == NET_UNROUTABLE)
        return;
    LOCK(cs_mapLocalHost);
    vfLimited[net] = fLimited;
}

bool IsLimited(enum Network net)
{
    LOCK(cs_mapLocalHost);
    return vfLimited[net];
}

bool IsLimited(const CNetAddr &addr)
{
    return IsLimited(addr.GetNetwork());
}

/** vote for a local address */
bool SeenLocal(const CService& addr)
{
    {
        LOCK(cs_mapLocalHost);
        if (mapLocalHost.count(addr) == 0)
            return false;
        mapLocalHost[addr].nScore++;
    }
    return true;
}


/** check whether a given address is potentially local */
bool IsLocal(const CService& addr)
{
    LOCK(cs_mapLocalHost);
    return mapLocalHost.count(addr) > 0;
}

/** check whether a given network is one we can probably connect to */
bool IsReachable(enum Network net)
{
    LOCK(cs_mapLocalHost);
    return !vfLimited[net];
}

/** check whether a given address is in a network we can probably connect to */
bool IsReachable(const CNetAddr& addr)
{
    enum Network net = addr.GetNetwork();
    return IsReachable(net);
}

void AddressCurrentlyConnected(const CService& addr)
{
    addrman.Connected(addr);
}


uint64_t CNode::nTotalBytesRecv = 0;
uint64_t CNode::nTotalBytesSent = 0;
CCriticalSection CNode::cs_totalBytesRecv;
CCriticalSection CNode::cs_totalBytesSent;

uint64_t CNode::nMaxOutboundLimit = 0;
uint64_t CNode::nMaxOutboundTotalBytesSentInCycle = 0;
uint64_t CNode::nMaxOutboundTimeframe = 60*60*24; //1 day
uint64_t CNode::nMaxOutboundCycleStartTime = 0;

CNode* FindNode(const CNetAddr& ip)
{
    LOCK(cs_vNodes);
    BOOST_FOREACH(CNode* pnode, vNodes)
        if ((CNetAddr)pnode->addr == ip)
            return (pnode);
    return NULL;
}

CNode* FindNode(const CSubNet& subNet)
{
    LOCK(cs_vNodes);
    BOOST_FOREACH(CNode* pnode, vNodes)
    if (subNet.Match((CNetAddr)pnode->addr))
        return (pnode);
    return NULL;
}

CNode* FindNode(const std::string& addrName)
{
    LOCK(cs_vNodes);
    BOOST_FOREACH(CNode* pnode, vNodes)
        if (pnode->addrName == addrName)
            return (pnode);
    return NULL;
}

CNode* FindNode(const CService& addr)
{
    LOCK(cs_vNodes);
    BOOST_FOREACH(CNode* pnode, vNodes)
        if ((CService)pnode->addr == addr)
            return (pnode);
    return NULL;
}

CNode* ConnectNode(CAddress addrConnect, const char *pszDest, bool fCountFailure)
{
    if (pszDest == NULL) {
        if (IsLocal(addrConnect))
            return NULL;

        // Look for an existing connection
        CNode* pnode = FindNode((CService)addrConnect);
        if (pnode)
        {
            pnode->AddRef();
            return pnode;
        }
    }

    /// debug print
    LogPrint("net", "trying connection %s lastseen=%.1fhrs\n",
        pszDest ? pszDest : addrConnect.ToString(),
        pszDest ? 0.0 : (double)(GetAdjustedTime() - addrConnect.nTime)/3600.0);

    // Connect
    SOCKET hSocket;
    bool proxyConnectionFailed = false;
    if (pszDest ? ConnectSocketByName(addrConnect, hSocket, pszDest, Params().GetDefaultPort(), nConnectTimeout, &proxyConnectionFailed) :
                  ConnectSocket(addrConnect, hSocket, nConnectTimeout, &proxyConnectionFailed))
    {
        if (!IsSelectableSocket(hSocket)) {
            LogPrintf("Cannot create connection: non-selectable socket created (fd >= FD_SETSIZE ?)\n");
            CloseSocket(hSocket);
            return NULL;
        }

        addrman.Attempt(addrConnect, fCountFailure);

        // Add node
        CNode* pnode = new CNode(hSocket, addrConnect, pszDest ? pszDest : "", false);
        pnode->AddRef();

        {
            LOCK(cs_vNodes);
            vNodes.push_back(pnode);
        }

        pnode->nTimeConnected = GetTime();

        return pnode;
    } else if (!proxyConnectionFailed) {
        // If connecting to the node failed, and failure is not caused by a problem connecting to
        // the proxy, mark this as an attempt.
        addrman.Attempt(addrConnect, fCountFailure);
    }

    return NULL;
}

static void DumpBanlist()
{
    CNode::SweepBanned(); // clean unused entries (if bantime has expired)

    if (!CNode::BannedSetIsDirty())
        return;

    int64_t nStart = GetTimeMillis();

    CBanDB bandb;
    banmap_t banmap;
    CNode::SetBannedSetDirty(false);
    CNode::GetBanned(banmap);
    if (!bandb.Write(banmap))
        CNode::SetBannedSetDirty(true);

    LogPrint("net", "Flushed %d banned node ips/subnets to banlist.dat  %dms\n",
        banmap.size(), GetTimeMillis() - nStart);
}

void CNode::CloseSocketDisconnect()
{
    fDisconnect = true;
    if (hSocket != INVALID_SOCKET)
    {
        LogPrint("net", "disconnecting peer=%d\n", id);
        CloseSocket(hSocket);
    }

    // in case this fails, we'll empty the recv buffer when the CNode is deleted
    TRY_LOCK(cs_vRecvMsg, lockRecv);
    if (lockRecv)
        vRecvMsg.clear();
}

void CNode::PushVersion()
{
    int nBestHeight = GetNodeSignals().GetHeight().get_value_or(0);

    int64_t nTime = (fInbound ? GetAdjustedTime() : GetTime());
    CAddress addrYou = (addr.IsRoutable() && !IsProxy(addr) ? addr : CAddress(CService("0.0.0.0",0)));
    CAddress addrMe = GetLocalAddress(&addr);
    GetRandBytes((unsigned char*)&nLocalHostNonce, sizeof(nLocalHostNonce));
    if (fLogIPs)
        LogPrint("net", "send version message: version %d, blocks=%d, us=%s, them=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), addrYou.ToString(), id);
    else
        LogPrint("net", "send version message: version %d, blocks=%d, us=%s, peer=%d\n", PROTOCOL_VERSION, nBestHeight, addrMe.ToString(), id);
    PushMessage(NetMsgType::VERSION, PROTOCOL_VERSION, nLocalServices, nTime, addrYou, addrMe,
                nLocalHostNonce, strSubVersion, nBestHeight, !GetBoolArg("-blocksonly", DEFAULT_BLOCKSONLY));
}





banmap_t CNode::setBanned;
CCriticalSection CNode::cs_setBanned;
bool CNode::setBannedIsDirty;

void CNode::ClearBanned()
{
    {
        LOCK(cs_setBanned);
        setBanned.clear();
        setBannedIsDirty = true;
    }
    DumpBanlist(); //store banlist to disk
    uiInterface.BannedListChanged();
}

bool CNode::IsBanned(CNetAddr ip)
{
    bool fResult = false;
    {
        LOCK(cs_setBanned);
        for (banmap_t::iterator it = setBanned.begin(); it != setBanned.end(); it++)
        {
            CSubNet subNet = (*it).first;
            CBanEntry banEntry = (*it).second;

            if(subNet.Match(ip) && GetTime() < banEntry.nBanUntil)
                fResult = true;
        }
    }
    return fResult;
}

bool CNode::IsBanned(CSubNet subnet)
{
    bool fResult = false;
    {
        LOCK(cs_setBanned);
        banmap_t::iterator i = setBanned.find(subnet);
        if (i != setBanned.end())
        {
            CBanEntry banEntry = (*i).second;
            if (GetTime() < banEntry.nBanUntil)
                fResult = true;
        }
    }
    return fResult;
}

void CNode::Ban(const CNetAddr& addr, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
    CSubNet subNet(addr);
    Ban(subNet, banReason, bantimeoffset, sinceUnixEpoch);
}

void CNode::Ban(const CSubNet& subNet, const BanReason &banReason, int64_t bantimeoffset, bool sinceUnixEpoch) {
    CBanEntry banEntry(GetTime());
    banEntry.banReason = banReason;
    if (bantimeoffset <= 0)
    {
        bantimeoffset = GetArg("-bantime", DEFAULT_MISBEHAVING_BANTIME);
        sinceUnixEpoch = false;
    }
    banEntry.nBanUntil = (sinceUnixEpoch ? 0 : GetTime() )+bantimeoffset;

    {
        LOCK(cs_setBanned);
        if (setBanned[subNet].nBanUntil < banEntry.nBanUntil) {
            setBanned[subNet] = banEntry;
            setBannedIsDirty = true;
        }
        else
            return;
    }
    uiInterface.BannedListChanged();
    {
        LOCK(cs_vNodes);
        BOOST_FOREACH(CNode* pnode, vNodes) {
            if (subNet.Match((CNetAddr)pnode->addr))
                pnode->fDisconnect = true;
        }
    }
    if(banReason == BanReasonManuallyAdded)
        DumpBanlist(); //store banlist to disk immediately if user requested ban
}

bool CNode::Unban(const CNetAddr &addr) {
    CSubNet subNet(addr);
    return Unban(subNet);
}

bool CNode::Unban(const CSubNet &subNet) {
    {
        LOCK(cs_setBanned);
        if (!setBanned.erase(subNet))
            return false;
        setBannedIsDirty = true;
    }
    uiInterface.BannedListChanged();
    DumpBanlist(); //store banlist to disk immediately
    return true;
}

void CNode::GetBanned(banmap_t &banMap)
{
    LOCK(cs_setBanned);
    banMap = setBanned; //create a thread safe copy
}

void CNode::SetBanned(const banmap_t &banMap)
{
    LOCK(cs_setBanned);
    setBanned = banMap;
    setBannedIsDirty = true;
}

void CNode::SweepBanned()
{
    int64_t now = GetTime();

    LOCK(cs_setBanned);
    banmap_t::iterator it = setBanned.begin();
    while(it != setBanned.end())
    {
        CSubNet subNet = (*it).first;
        CBanEntry banEntry = (*it).second;
        if(now > banEntry.nBanUntil)
        {
            setBanned.erase(it++);
            setBannedIsDirty = true;
            LogPrint("net", "%s: Removed banned node ip/subnet from banlist.dat: %s\n", __func__, subNet.ToString());
        }
        else
            ++it;
    }
}

bool CNode::BannedSetIsDirty()
{
    LOCK(cs_setBanned);
    return setBannedIsDirty;
}

void CNode::SetBannedSetDirty(bool dirty)
{
    LOCK(cs_setBanned); //reuse setBanned lock for the isDirty flag
    setBannedIsDirty = dirty;
}


std::vector<CSubNet> CNode::vWhitelistedRange;
CCriticalSection CNode::cs_vWhitelistedRange;

bool CNode::IsWhitelistedRange(const CNetAddr &addr) {
    LOCK(cs_vWhitelistedRange);
    BOOST_FOREACH(const CSubNet& subnet, vWhitelistedRange) {
        if (subnet.Match(addr))
            return true;
    }
    return false;
}

void CNode::AddWhitelistedRange(const CSubNet &subnet) {
    LOCK(cs_vWhitelistedRange);
    vWhitelistedRange.push_back(subnet);
}

#undef X
#define X(name) stats.name = name
void CNode::copyStats(CNodeStats &stats)
{
    stats.nodeid = this->GetId();
    X(nServices);
    X(fRelayTxes);
    X(nLastSend);
    X(nLastRecv);
    X(nTimeConnected);
    X(nTimeOffset);
    X(addrName);
    X(nVersion);
    X(cleanSubVer);
    X(fInbound);
    X(nStartingHeight);
    X(nSendBytes);
    X(mapSendBytesPerMsgCmd);
    X(nRecvBytes);
    X(mapRecvBytesPerMsgCmd);
    X(fWhitelisted);

    // It is common for nodes with good ping times to suddenly become lagged,
    // due to a new block arriving or other large transfer.
    // Merely reporting pingtime might fool the caller into thinking the node was still responsive,
    // since pingtime does not update until the ping is complete, which might take a while.
    // So, if a ping is taking an unusually long time in flight,
    // the caller can immediately detect that this is happening.
    int64_t nPingUsecWait = 0;
    if ((0 != nPingNonceSent) && (0 != nPingUsecStart)) {
        nPingUsecWait = GetTimeMicros() - nPingUsecStart;
    }

    // Raw ping time is in microseconds, but show it to user as whole seconds (Bitcoin users should be well used to small numbers with many decimal places by now :)
    stats.dPingTime = (((double)nPingUsecTime) / 1e6);
    stats.dPingMin  = (((double)nMinPingUsecTime) / 1e6);
    stats.dPingWait = (((double)nPingUsecWait) / 1e6);

    // Leave string empty if addrLocal invalid (not filled in yet)
    stats.addrLocal = addrLocal.IsValid() ? addrLocal.ToString() : "";
}
#undef X

// requires LOCK(cs_vRecvMsg)
bool CNode::ReceiveMsgBytes(const char *pch, unsigned int nBytes)
{
    while (nBytes > 0) {

        // get current incomplete message, or create a new one
        if (vRecvMsg.empty() ||
            vRecvMsg.back().complete())
            vRecvMsg.push_back(CNetMessage(Params().MessageStart(), SER_NETWORK, nRecvVersion));

        CNetMessage& msg = vRecvMsg.back();

        // absorb network data
        int handled;
        if (!msg.in_data)
            handled = msg.readHeader(pch, nBytes);
        else
            handled = msg.readData(pch, nBytes);

        if (handled < 0)
                return false;

        if (msg.in_data && msg.hdr.nMessageSize > MAX_PROTOCOL_MESSAGE_LENGTH) {
            LogPrint("net", "Oversized message from peer=%i, disconnecting\n", GetId());
            return false;
        }

        pch += handled;
        nBytes -= handled;

        if (msg.complete()) {

            //store received bytes per message command
            //to prevent a memory DOS, only allow valid commands
            mapMsgCmdSize::iterator i = mapRecvBytesPerMsgCmd.find(msg.hdr.pchCommand);
            if (i == mapRecvBytesPerMsgCmd.end())
                i = mapRecvBytesPerMsgCmd.find(NET_MESSAGE_COMMAND_OTHER);
            assert(i != mapRecvBytesPerMsgCmd.end());
            i->second += msg.hdr.nMessageSize + CMessageHeader::HEADER_SIZE;

            msg.nTime = GetTimeMicros();
            messageHandlerCondition.notify_one();
        }
    }

    return true;
}

int CNetMessage::readHeader(const char *pch, unsigned int nBytes)
{
    // copy data to temporary parsing buffer
    unsigned int nRemaining = 24 - nHdrPos;
    unsigned int nCopy = std::min(nRemaining, nBytes);

    memcpy(&hdrbuf[nHdrPos], pch, nCopy);
    nHdrPos += nCopy;

    // if header incomplete, exit
    if (nHdrPos < 24)
        return nCopy;

    // deserialize to CMessageHeader
    try {
        hdrbuf >> hdr;
    }
    catch (const std::exception&) {
        return -1;
    }

    // reject messages larger than MAX_SIZE
    if (hdr.nMessageSize > MAX_SIZE)
            return -1;

    // switch state to reading message data
    in_data = true;

    return nCopy;
}

int CNetMessage::readData(const char *pch, unsigned int nBytes)
{
    unsigned int nRemaining = hdr.nMessageSize - nDataPos;
    unsigned int nCopy = std::min(nRemaining, nBytes);

    if (vRecv.size() < nDataPos + nCopy) {
        // Allocate up to 256 KiB ahead, but never more than the total message size.
        vRecv.resize(std::min(hdr.nMessageSize, nDataPos + nCopy + 256 * 1024));
    }

    memcpy(&vRecv[nDataPos], pch, nCopy);
    nDataPos += nCopy;

    return nCopy;
}









// requires LOCK(cs_vSend)
void SocketSendData(CNode *pnode)
{
    std::deque<CSerializeData>::iterator it = pnode->vSendMsg.begin();

    while (it != pnode->vSendMsg.end()) {
        const CSerializeData &data = *it;
        assert(data.size() > pnode->nSendOffset);
        int nBytes = send(pnode->hSocket, &data[pnode->nSendOffset], data.size() - pnode->nSendOffset, MSG_NOSIGNAL | MSG_DONTWAIT);
        if (nBytes > 0) {
            pnode->nLastSend = GetTime();
            pnode->nSendBytes += nBytes;
            pnode->nSendOffset += nBytes;
            pnode->RecordBytesSent(nBytes);
            if (pnode->nSendOffset == data.size()) {
                pnode->nSendOffset = 0;
                pnode->nSendSize -= data.size();
                it++;
            } else {
                // could not send full message; stop sending more
                break;
            }
        } else {
            if (nBytes < 0) {
                // error
                int nErr = WSAGetLastError();
                if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
                {
                    LogPrintf("socket send error %s\n", NetworkErrorString(nErr));
                    pnode->CloseSocketDisconnect();
                }
            }
            // couldn't send anything at all
            break;
        }
    }

    if (it == pnode->vSendMsg.end()) {
        assert(pnode->nSendOffset == 0);
        assert(pnode->nSendSize == 0);
    }
    pnode->vSendMsg.erase(pnode->vSendMsg.begin(), it);
}

static std::list<CNode*> vNodesDisconnected;

struct NodeEvictionCandidate
{
    NodeId id;
    int64_t nTimeConnected;
    int64_t nMinPingUsecTime;
    CAddress addr;
};

static bool ReverseCompareNodeMinPingTime(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
    return a.nMinPingUsecTime > b.nMinPingUsecTime;
}

static bool ReverseCompareNodeTimeConnected(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
{
    return a.nTimeConnected > b.nTimeConnected;
}

class CompareNetGroupKeyed
{
    std::vector<unsigned char> vchSecretKey;
public:
    CompareNetGroupKeyed()
    {
        vchSecretKey.resize(32, 0);
        GetRandBytes(vchSecretKey.data(), vchSecretKey.size());
    }

    bool operator()(const NodeEvictionCandidate &a, const NodeEvictionCandidate &b)
    {
        std::vector<unsigned char> vchGroupA, vchGroupB;
        CSHA256 hashA, hashB;
        std::vector<unsigned char> vchA(32), vchB(32);

        vchGroupA = a.addr.GetGroup();
        vchGroupB = b.addr.GetGroup();

        hashA.Write(begin_ptr(vchGroupA), vchGroupA.size());
        hashB.Write(begin_ptr(vchGroupB), vchGroupB.size());

        hashA.Write(begin_ptr(vchSecretKey), vchSecretKey.size());
        hashB.Write(begin_ptr(vchSecretKey), vchSecretKey.size());

        hashA.Finalize(begin_ptr(vchA));
        hashB.Finalize(begin_ptr(vchB));

        return vchA < vchB;
    }
};

/** Try to find a connection to evict when the node is full.
 *  Extreme care must be taken to avoid opening the node to attacker
 *   triggered network partitioning.
 *  The strategy used here is to protect a small number of peers
 *   for each of several distinct characteristics which are difficult
 *   to forge.  In order to partition a node the attacker must be
 *   simultaneously better at all of them than honest peers.
 */
static bool AttemptToEvictConnection(bool fPreferNewConnection) {
    std::vector<NodeEvictionCandidate> vEvictionCandidates;
    {
        LOCK(cs_vNodes);

        BOOST_FOREACH(CNode *node, vNodes) {
            if (node->fWhitelisted)
                continue;
            if (!node->fInbound)
                continue;
            if (node->fDisconnect)
                continue;
            NodeEvictionCandidate candidate = {node->id, node->nTimeConnected, node->nMinPingUsecTime, node->addr};
            vEvictionCandidates.push_back(candidate);
        }
    }

    if (vEvictionCandidates.empty()) return false;

    // Protect connections with certain characteristics

    // Deterministically select 4 peers to protect by netgroup.
    // An attacker cannot predict which netgroups will be protected.
    static CompareNetGroupKeyed comparerNetGroupKeyed;
    std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), comparerNetGroupKeyed);
    vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(4, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());

    if (vEvictionCandidates.empty()) return false;

    // Protect the 8 nodes with the lowest minimum ping time.
    // An attacker cannot manipulate this metric without physically moving nodes closer to the target.
    std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeMinPingTime);
    vEvictionCandidates.erase(vEvictionCandidates.end() - std::min(8, static_cast<int>(vEvictionCandidates.size())), vEvictionCandidates.end());

    if (vEvictionCandidates.empty()) return false;

    // Protect the half of the remaining nodes which have been connected the longest.
    // This replicates the non-eviction implicit behavior, and precludes attacks that start later.
    std::sort(vEvictionCandidates.begin(), vEvictionCandidates.end(), ReverseCompareNodeTimeConnected);
    vEvictionCandidates.erase(vEvictionCandidates.end() - static_cast<int>(vEvictionCandidates.size() / 2), vEvictionCandidates.end());

    if (vEvictionCandidates.empty()) return false;

    // Identify the network group with the most connections and youngest member.
    // (vEvictionCandidates is already sorted by reverse connect time)
    std::vector<unsigned char> naMostConnections;
    unsigned int nMostConnections = 0;
    int64_t nMostConnectionsTime = 0;
    std::map<std::vector<unsigned char>, std::vector<NodeEvictionCandidate> > mapAddrCounts;
    BOOST_FOREACH(const NodeEvictionCandidate &node, vEvictionCandidates) {
        mapAddrCounts[node.addr.GetGroup()].push_back(node);
        int64_t grouptime = mapAddrCounts[node.addr.GetGroup()][0].nTimeConnected;
        size_t groupsize = mapAddrCounts[node.addr.GetGroup()].size();

        if (groupsize > nMostConnections || (groupsize == nMostConnections && grouptime > nMostConnectionsTime)) {
            nMostConnections = groupsize;
            nMostConnectionsTime = grouptime;
            naMostConnections = node.addr.GetGroup();
        }
    }

    // Reduce to the network group with the most connections
    vEvictionCandidates = mapAddrCounts[naMostConnections];

    // Do not disconnect peers if there is only one unprotected connection from their network group.
    // This step excessively favors netgroup diversity, and should be removed once more protective criteria are established.
    if (vEvictionCandidates.size() <= 1)
        // unless we prefer the new connection (for whitelisted peers)
        if (!fPreferNewConnection)
            return false;

    // Disconnect from the network group with the most connections
    NodeId evicted = vEvictionCandidates.front().id;
    LOCK(cs_vNodes);
    for(std::vector<CNode*>::const_iterator it(vNodes.begin()); it != vNodes.end(); ++it) {
        if ((*it)->GetId() == evicted) {
            (*it)->fDisconnect = true;
            return true;
        }
    }
    return false;
}

static void AcceptConnection(const ListenSocket& hListenSocket) {
    struct sockaddr_storage sockaddr;
    socklen_t len = sizeof(sockaddr);
    SOCKET hSocket = accept(hListenSocket.socket, (struct sockaddr*)&sockaddr, &len);
    CAddress addr;
    int nInbound = 0;
    int nMaxInbound = nMaxConnections - MAX_OUTBOUND_CONNECTIONS;

    if (hSocket != INVALID_SOCKET)
        if (!addr.SetSockAddr((const struct sockaddr*)&sockaddr))
            LogPrintf("Warning: Unknown socket family\n");

    bool whitelisted = hListenSocket.whitelisted || CNode::IsWhitelistedRange(addr);
    {
        LOCK(cs_vNodes);
        BOOST_FOREACH(CNode* pnode, vNodes)
            if (pnode->fInbound)
                nInbound++;
    }

    if (hSocket == INVALID_SOCKET)
    {
        int nErr = WSAGetLastError();
        if (nErr != WSAEWOULDBLOCK)
            LogPrintf("socket error accept failed: %s\n", NetworkErrorString(nErr));
        return;
    }

    if (!IsSelectableSocket(hSocket))
    {
        LogPrintf("connection from %s dropped: non-selectable socket\n", addr.ToString());
        CloseSocket(hSocket);
        return;
    }

    // According to the internet TCP_NODELAY is not carried into accepted sockets
    // on all platforms.  Set it again here just to be sure.
    int set = 1;
#ifdef WIN32
    setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&set, sizeof(int));
#else
    setsockopt(hSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&set, sizeof(int));
#endif

    if (CNode::IsBanned(addr) && !whitelisted)
    {
        LogPrintf("connection from %s dropped (banned)\n", addr.ToString());
        CloseSocket(hSocket);
        return;
    }

    if (nInbound >= nMaxInbound)
    {
        if (!AttemptToEvictConnection(whitelisted)) {
            // No connection to evict, disconnect the new connection
            LogPrint("net", "failed to find an eviction candidate - connection dropped (full)\n");
            CloseSocket(hSocket);
            return;
        }
    }

    CNode* pnode = new CNode(hSocket, addr, "", true);
    pnode->AddRef();
    pnode->fWhitelisted = whitelisted;

    LogPrint("net", "connection from %s accepted\n", addr.ToString());

    {
        LOCK(cs_vNodes);
        vNodes.push_back(pnode);
    }
}

void ThreadSocketHandler()
{
    unsigned int nPrevNodeCount = 0;
    while (true)
    {
        //
        // Disconnect nodes
        //
        {
            LOCK(cs_vNodes);
            // Disconnect unused nodes
            std::vector<CNode*> vNodesCopy = vNodes;
            BOOST_FOREACH(CNode* pnode, vNodesCopy)
            {
                if (pnode->fDisconnect ||
                    (pnode->GetRefCount() <= 0 && pnode->vRecvMsg.empty() && pnode->nSendSize == 0 && pnode->ssSend.empty()))
                {
                    // remove from vNodes
                    vNodes.erase(remove(vNodes.begin(), vNodes.end(), pnode), vNodes.end());

                    // release outbound grant (if any)
                    pnode->grantOutbound.Release();

                    // close socket and cleanup
                    pnode->CloseSocketDisconnect();

                    // hold in disconnected pool until all refs are released
                    if (pnode->fNetworkNode || pnode->fInbound)
                        pnode->Release();
                    vNodesDisconnected.push_back(pnode);
                }
            }
        }
        {
            // Delete disconnected nodes
            std::list<CNode*> vNodesDisconnectedCopy = vNodesDisconnected;
            BOOST_FOREACH(CNode* pnode, vNodesDisconnectedCopy)
            {
                // wait until threads are done using it
                if (pnode->GetRefCount() <= 0)
                {
                    bool fDelete = false;
                    {
                        TRY_LOCK(pnode->cs_vSend, lockSend);
                        if (lockSend)
                        {
                            TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                            if (lockRecv)
                            {
                                TRY_LOCK(pnode->cs_inventory, lockInv);
                                if (lockInv)
                                    fDelete = true;
                            }
                        }
                    }
                    if (fDelete)
                    {
                        vNodesDisconnected.remove(pnode);
                        delete pnode;
                    }
                }
            }
        }
        if(vNodes.size() != nPrevNodeCount) {
            nPrevNodeCount = vNodes.size();
            uiInterface.NotifyNumConnectionsChanged(nPrevNodeCount);
        }

        //
        // Find which sockets have data to receive
        //
        struct timeval timeout;
        timeout.tv_sec  = 0;
        timeout.tv_usec = 50000; // frequency to poll pnode->vSend

        fd_set fdsetRecv;
        fd_set fdsetSend;
        fd_set fdsetError;
        FD_ZERO(&fdsetRecv);
        FD_ZERO(&fdsetSend);
        FD_ZERO(&fdsetError);
        SOCKET hSocketMax = 0;
        bool have_fds = false;

        BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket) {
            FD_SET(hListenSocket.socket, &fdsetRecv);
            hSocketMax = std::max(hSocketMax, hListenSocket.socket);
            have_fds = true;
        }

        {
            LOCK(cs_vNodes);
            BOOST_FOREACH(CNode* pnode, vNodes)
            {
                if (pnode->hSocket == INVALID_SOCKET)
                    continue;
                FD_SET(pnode->hSocket, &fdsetError);
                hSocketMax = std::max(hSocketMax, pnode->hSocket);
                have_fds = true;

                // Implement the following logic:
                // * If there is data to send, select() for sending data. As this only
                //   happens when optimistic write failed, we choose to first drain the
                //   write buffer in this case before receiving more. This avoids
                //   needlessly queueing received data, if the remote peer is not themselves
                //   receiving data. This means properly utilizing TCP flow control signalling.
                // * Otherwise, if there is no (complete) message in the receive buffer,
                //   or there is space left in the buffer, select() for receiving data.
                // * (if neither of the above applies, there is certainly one message
                //   in the receiver buffer ready to be processed).
                // Together, that means that at least one of the following is always possible,
                // so we don't deadlock:
                // * We send some data.
                // * We wait for data to be received (and disconnect after timeout).
                // * We process a message in the buffer (message handler thread).
                {
                    TRY_LOCK(pnode->cs_vSend, lockSend);
                    if (lockSend && !pnode->vSendMsg.empty()) {
                        FD_SET(pnode->hSocket, &fdsetSend);
                        continue;
                    }
                }
                {
                    TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                    if (lockRecv && (
                        pnode->vRecvMsg.empty() || !pnode->vRecvMsg.front().complete() ||
                        pnode->GetTotalRecvSize() <= ReceiveFloodSize()))
                        FD_SET(pnode->hSocket, &fdsetRecv);
                }
            }
        }

        int nSelect = select(have_fds ? hSocketMax + 1 : 0,
                             &fdsetRecv, &fdsetSend, &fdsetError, &timeout);
        boost::this_thread::interruption_point();

        if (nSelect == SOCKET_ERROR)
        {
            if (have_fds)
            {
                int nErr = WSAGetLastError();
                LogPrintf("socket select error %s\n", NetworkErrorString(nErr));
                for (unsigned int i = 0; i <= hSocketMax; i++)
                    FD_SET(i, &fdsetRecv);
            }
            FD_ZERO(&fdsetSend);
            FD_ZERO(&fdsetError);
            MilliSleep(timeout.tv_usec/1000);
        }

        //
        // Accept new connections
        //
        BOOST_FOREACH(const ListenSocket& hListenSocket, vhListenSocket)
        {
            if (hListenSocket.socket != INVALID_SOCKET && FD_ISSET(hListenSocket.socket, &fdsetRecv))
            {
                AcceptConnection(hListenSocket);
            }
        }

        //
        // Service each socket
        //
        std::vector<CNode*> vNodesCopy;
        {
            LOCK(cs_vNodes);
            vNodesCopy = vNodes;
            BOOST_FOREACH(CNode* pnode, vNodesCopy)
                pnode->AddRef();
        }
        BOOST_FOREACH(CNode* pnode, vNodesCopy)
        {
            boost::this_thread::interruption_point();

            //
            // Receive
            //
            if (pnode->hSocket == INVALID_SOCKET)
                continue;
            if (FD_ISSET(pnode->hSocket, &fdsetRecv) || FD_ISSET(pnode->hSocket, &fdsetError))
            {
                TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                if (lockRecv)
                {
                    {
                        // typical socket buffer is 8K-64K
                        char pchBuf[0x10000];
                        int nBytes = recv(pnode->hSocket, pchBuf, sizeof(pchBuf), MSG_DONTWAIT);
                        if (nBytes > 0)
                        {
                            if (!pnode->ReceiveMsgBytes(pchBuf, nBytes))
                                pnode->CloseSocketDisconnect();
                            pnode->nLastRecv = GetTime();
                            pnode->nRecvBytes += nBytes;
                            pnode->RecordBytesRecv(nBytes);
                        }
                        else if (nBytes == 0)
                        {
                            // socket closed gracefully
                            if (!pnode->fDisconnect)
                                LogPrint("net", "socket closed\n");
                            pnode->CloseSocketDisconnect();
                        }
                        else if (nBytes < 0)
                        {
                            // error
                            int nErr = WSAGetLastError();
                            if (nErr != WSAEWOULDBLOCK && nErr != WSAEMSGSIZE && nErr != WSAEINTR && nErr != WSAEINPROGRESS)
                            {
                                if (!pnode->fDisconnect)
                                    LogPrintf("socket recv error %s\n", NetworkErrorString(nErr));
                                pnode->CloseSocketDisconnect();
                            }
                        }
                    }
                }
            }

            //
            // Send
            //
            if (pnode->hSocket == INVALID_SOCKET)
                continue;
            if (FD_ISSET(pnode->hSocket, &fdsetSend))
            {
                TRY_LOCK(pnode->cs_vSend, lockSend);
                if (lockSend)
                    SocketSendData(pnode);
            }

            //
            // Inactivity checking
            //
            int64_t nTime = GetTime();
            if (nTime - pnode->nTimeConnected > 60)
            {
                if (pnode->nLastRecv == 0 || pnode->nLastSend == 0)
                {
                    LogPrint("net", "socket no message in first 60 seconds, %d %d from %d\n", pnode->nLastRecv != 0, pnode->nLastSend != 0, pnode->id);
                    pnode->fDisconnect = true;
                }
                else if (nTime - pnode->nLastSend > TIMEOUT_INTERVAL)
                {
                    LogPrintf("socket sending timeout: %is\n", nTime - pnode->nLastSend);
                    pnode->fDisconnect = true;
                }
                else if (nTime - pnode->nLastRecv > (pnode->nVersion > BIP0031_VERSION ? TIMEOUT_INTERVAL : 90*60))
                {
                    LogPrintf("socket receive timeout: %is\n", nTime - pnode->nLastRecv);
                    pnode->fDisconnect = true;
                }
                else if (pnode->nPingNonceSent && pnode->nPingUsecStart + TIMEOUT_INTERVAL * 1000000 < GetTimeMicros())
                {
                    LogPrintf("ping timeout: %fs\n", 0.000001 * (GetTimeMicros() - pnode->nPingUsecStart));
                    pnode->fDisconnect = true;
                }
            }
        }
        {
            LOCK(cs_vNodes);
            BOOST_FOREACH(CNode* pnode, vNodesCopy)
                pnode->Release();
        }
    }
}









#ifdef USE_UPNP
void ThreadMapPort()
{
    std::string port = strprintf("%u", GetListenPort());
    const char * multicastif = 0;
    const char * minissdpdpath = 0;
    struct UPNPDev * devlist = 0;
    char lanaddr[64];

#ifndef UPNPDISCOVER_SUCCESS
    /* miniupnpc 1.5 */
    devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0);
#elif MINIUPNPC_API_VERSION < 14
    /* miniupnpc 1.6 */
    int error = 0;
    devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, &error);
#else
    /* miniupnpc 1.9.20150730 */
    int error = 0;
    devlist = upnpDiscover(2000, multicastif, minissdpdpath, 0, 0, 2, &error);
#endif

    struct UPNPUrls urls;
    struct IGDdatas data;
    int r;

    r = UPNP_GetValidIGD(devlist, &urls, &data, lanaddr, sizeof(lanaddr));
    if (r == 1)
    {
        if (fDiscover) {
            char externalIPAddress[40];
            r = UPNP_GetExternalIPAddress(urls.controlURL, data.first.servicetype, externalIPAddress);
            if(r != UPNPCOMMAND_SUCCESS)
                LogPrintf("UPnP: GetExternalIPAddress() returned %d\n", r);
            else
            {
                if(externalIPAddress[0])
                {
                    LogPrintf("UPnP: ExternalIPAddress = %s\n", externalIPAddress);
                    AddLocal(CNetAddr(externalIPAddress), LOCAL_UPNP);
                }
                else
                    LogPrintf("UPnP: GetExternalIPAddress failed.\n");
            }
        }

        std::string strDesc = "Bitcoin " + FormatFullVersion();

        try {
            while (true) {
#ifndef UPNPDISCOVER_SUCCESS
                /* miniupnpc 1.5 */
                r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                    port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0);
#else
                /* miniupnpc 1.6 */
                r = UPNP_AddPortMapping(urls.controlURL, data.first.servicetype,
                                    port.c_str(), port.c_str(), lanaddr, strDesc.c_str(), "TCP", 0, "0");
#endif

                if(r!=UPNPCOMMAND_SUCCESS)
                    LogPrintf("AddPortMapping(%s, %s, %s) failed with code %d (%s)\n",
                        port, port, lanaddr, r, strupnperror(r));
                else
                    LogPrintf("UPnP Port Mapping successful.\n");

                MilliSleep(20*60*1000); // Refresh every 20 minutes
            }
        }
        catch (const boost::thread_interrupted&)
        {
            r = UPNP_DeletePortMapping(urls.controlURL, data.first.servicetype, port.c_str(), "TCP", 0);
            LogPrintf("UPNP_DeletePortMapping() returned: %d\n", r);
            freeUPNPDevlist(devlist); devlist = 0;
            FreeUPNPUrls(&urls);
            throw;
        }
    } else {
        LogPrintf("No valid UPnP IGDs found\n");
        freeUPNPDevlist(devlist); devlist = 0;
        if (r != 0)
            FreeUPNPUrls(&urls);
    }
}

void MapPort(bool fUseUPnP)
{
    static boost::thread* upnp_thread = NULL;

    if (fUseUPnP)
    {
        if (upnp_thread) {
            upnp_thread->interrupt();
            upnp_thread->join();
            delete upnp_thread;
        }
        upnp_thread = new boost::thread(boost::bind(&TraceThread<void (*)()>, "upnp", &ThreadMapPort));
    }
    else if (upnp_thread) {
        upnp_thread->interrupt();
        upnp_thread->join();
        delete upnp_thread;
        upnp_thread = NULL;
    }
}

#else
void MapPort(bool)
{
    // Intentionally left blank.
}
#endif






void ThreadDNSAddressSeed()
{
    // goal: only query DNS seeds if address need is acute
    if ((addrman.size() > 0) &&
        (!GetBoolArg("-forcednsseed", DEFAULT_FORCEDNSSEED))) {
        MilliSleep(11 * 1000);

        LOCK(cs_vNodes);
        if (vNodes.size() >= 2) {
            LogPrintf("P2P peers available. Skipped DNS seeding.\n");
            return;
        }
    }

    const std::vector<CDNSSeedData> &vSeeds = Params().DNSSeeds();
    int found = 0;

    LogPrintf("Loading addresses from DNS seeds (could take a while)\n");

    BOOST_FOREACH(const CDNSSeedData &seed, vSeeds) {
        if (HaveNameProxy()) {
            AddOneShot(seed.host);
        } else {
            std::vector<CNetAddr> vIPs;
            std::vector<CAddress> vAdd;
            if (LookupHost(seed.host.c_str(), vIPs, 0, true))
            {
                BOOST_FOREACH(const CNetAddr& ip, vIPs)
                {
                    int nOneDay = 24*3600;
                    CAddress addr = CAddress(CService(ip, Params().GetDefaultPort()));
                    addr.nTime = GetTime() - 3*nOneDay - GetRand(4*nOneDay); // use a random age between 3 and 7 days old
                    vAdd.push_back(addr);
                    found++;
                }
            }
            // TODO: The seed name resolve may fail, yielding an IP of [::], which results in
            // addrman assigning the same source to results from different seeds.
            // This should switch to a hard-coded stable dummy IP for each seed name, so that the
            // resolve is not required at all.
            if (!vIPs.empty()) {
                CService seedSource;
                Lookup(seed.name.c_str(), seedSource, 0, true);
                addrman.Add(vAdd, seedSource);
            }
        }
    }

    LogPrintf("%d addresses found from DNS seeds\n", found);
}












void DumpAddresses()
{
    int64_t nStart = GetTimeMillis();

    CAddrDB adb;
    adb.Write(addrman);

    LogPrint("net", "Flushed %d addresses to peers.dat  %dms\n",
           addrman.size(), GetTimeMillis() - nStart);
}

void DumpData()
{
    DumpAddresses();
    DumpBanlist();
}

void static ProcessOneShot()
{
    std::string strDest;
    {
        LOCK(cs_vOneShots);
        if (vOneShots.empty())
            return;
        strDest = vOneShots.front();
        vOneShots.pop_front();
    }
    CAddress addr;
    CSemaphoreGrant grant(*semOutbound, true);
    if (grant) {
        if (!OpenNetworkConnection(addr, false, &grant, strDest.c_str(), true))
            AddOneShot(strDest);
    }
}

void ThreadOpenConnections()
{
    // Connect to specific addresses
    if (mapArgs.count("-connect") && mapMultiArgs["-connect"].size() > 0)
    {
        for (int64_t nLoop = 0;; nLoop++)
        {
            ProcessOneShot();
            BOOST_FOREACH(const std::string& strAddr, mapMultiArgs["-connect"])
            {
                CAddress addr;
                OpenNetworkConnection(addr, false, NULL, strAddr.c_str());
                for (int i = 0; i < 10 && i < nLoop; i++)
                {
                    MilliSleep(500);
                }
            }
            MilliSleep(500);
        }
    }

    // Initiate network connections
    int64_t nStart = GetTime();
    while (true)
    {
        ProcessOneShot();

        MilliSleep(500);

        CSemaphoreGrant grant(*semOutbound);
        boost::this_thread::interruption_point();

        // Add seed nodes if DNS seeds are all down (an infrastructure attack?).
        if (addrman.size() == 0 && (GetTime() - nStart > 60)) {
            static bool done = false;
            if (!done) {
                LogPrintf("Adding fixed seed nodes as DNS doesn't seem to be available.\n");
                addrman.Add(convertSeed6(Params().FixedSeeds()), CNetAddr("127.0.0.1"));
                done = true;
            }
        }

        //
        // Choose an address to connect to based on most recently seen
        //
        CAddress addrConnect;

        // Only connect out to one peer per network group (/16 for IPv4).
        // Do this here so we don't have to critsect vNodes inside mapAddresses critsect.
        int nOutbound = 0;
        std::set<std::vector<unsigned char> > setConnected;
        {
            LOCK(cs_vNodes);
            BOOST_FOREACH(CNode* pnode, vNodes) {
                if (!pnode->fInbound) {
                    setConnected.insert(pnode->addr.GetGroup());
                    nOutbound++;
                }
            }
        }

        int64_t nANow = GetAdjustedTime();

        int nTries = 0;
        while (true)
        {
            CAddrInfo addr = addrman.Select();

            // if we selected an invalid address, restart
            if (!addr.IsValid() || setConnected.count(addr.GetGroup()) || IsLocal(addr))
                break;

            // If we didn't find an appropriate destination after trying 100 addresses fetched from addrman,
            // stop this loop, and let the outer loop run again (which sleeps, adds seed nodes, recalculates
            // already-connected network ranges, ...) before trying new addrman addresses.
            nTries++;
            if (nTries > 100)
                break;

            if (IsLimited(addr))
                continue;

            // only consider very recently tried nodes after 30 failed attempts
            if (nANow - addr.nLastTry < 600 && nTries < 30)
                continue;

            // do not allow non-default ports, unless after 50 invalid addresses selected already
            if (addr.GetPort() != Params().GetDefaultPort() && nTries < 50)
                continue;

            addrConnect = addr;
            break;
        }

        if (addrConnect.IsValid())
            OpenNetworkConnection(addrConnect, (int)setConnected.size() >= std::min(nMaxConnections - 1, 2), &grant);
    }
}

void ThreadOpenAddedConnections()
{
    {
        LOCK(cs_vAddedNodes);
        vAddedNodes = mapMultiArgs["-addnode"];
    }

    if (HaveNameProxy()) {
        while(true) {
            std::list<std::string> lAddresses(0);
            {
                LOCK(cs_vAddedNodes);
                BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
                    lAddresses.push_back(strAddNode);
            }
            BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
                CAddress addr;
                CSemaphoreGrant grant(*semOutbound);
                OpenNetworkConnection(addr, false, &grant, strAddNode.c_str());
                MilliSleep(500);
            }
            MilliSleep(120000); // Retry every 2 minutes
        }
    }

    for (unsigned int i = 0; true; i++)
    {
        std::list<std::string> lAddresses(0);
        {
            LOCK(cs_vAddedNodes);
            BOOST_FOREACH(const std::string& strAddNode, vAddedNodes)
                lAddresses.push_back(strAddNode);
        }

        std::list<std::vector<CService> > lservAddressesToAdd(0);
        BOOST_FOREACH(const std::string& strAddNode, lAddresses) {
            std::vector<CService> vservNode(0);
            if(Lookup(strAddNode.c_str(), vservNode, Params().GetDefaultPort(), fNameLookup, 0))
                lservAddressesToAdd.push_back(vservNode);
        }
        // Attempt to connect to each IP for each addnode entry until at least one is successful per addnode entry
        // (keeping in mind that addnode entries can have many IPs if fNameLookup)
        {
            LOCK(cs_vNodes);
            BOOST_FOREACH(CNode* pnode, vNodes)
                for (std::list<std::vector<CService> >::iterator it = lservAddressesToAdd.begin(); it != lservAddressesToAdd.end(); it++)
                    BOOST_FOREACH(const CService& addrNode, *(it))
                        if (pnode->addr == addrNode)
                        {
                            it = lservAddressesToAdd.erase(it);
                            it--;
                            break;
                        }
        }
        BOOST_FOREACH(std::vector<CService>& vserv, lservAddressesToAdd)
        {
            CSemaphoreGrant grant(*semOutbound);
            OpenNetworkConnection(CAddress(vserv[i % vserv.size()]), false, &grant);
            MilliSleep(500);
        }
        MilliSleep(120000); // Retry every 2 minutes
    }
}

// if successful, this moves the passed grant to the constructed node
bool OpenNetworkConnection(const CAddress& addrConnect, bool fCountFailure, CSemaphoreGrant *grantOutbound, const char *pszDest, bool fOneShot)
{
    //
    // Initiate outbound network connection
    //
    boost::this_thread::interruption_point();
    if (!pszDest) {
        if (IsLocal(addrConnect) ||
            FindNode((CNetAddr)addrConnect) || CNode::IsBanned(addrConnect) ||
            FindNode(addrConnect.ToStringIPPort()))
            return false;
    } else if (FindNode(std::string(pszDest)))
        return false;

    CNode* pnode = ConnectNode(addrConnect, pszDest, fCountFailure);
    boost::this_thread::interruption_point();

    if (!pnode)
        return false;
    if (grantOutbound)
        grantOutbound->MoveTo(pnode->grantOutbound);
    pnode->fNetworkNode = true;
    if (fOneShot)
        pnode->fOneShot = true;

    return true;
}


void ThreadMessageHandler()
{
    boost::mutex condition_mutex;
    boost::unique_lock<boost::mutex> lock(condition_mutex);

    while (true)
    {
        std::vector<CNode*> vNodesCopy;
        {
            LOCK(cs_vNodes);
            vNodesCopy = vNodes;
            BOOST_FOREACH(CNode* pnode, vNodesCopy) {
                pnode->AddRef();
            }
        }

        bool fSleep = true;

        BOOST_FOREACH(CNode* pnode, vNodesCopy)
        {
            if (pnode->fDisconnect)
                continue;

            // Receive messages
            {
                TRY_LOCK(pnode->cs_vRecvMsg, lockRecv);
                if (lockRecv)
                {
                    if (!GetNodeSignals().ProcessMessages(pnode))
                        pnode->CloseSocketDisconnect();

                    if (pnode->nSendSize < SendBufferSize())
                    {
                        if (!pnode->vRecvGetData.empty() || (!pnode->vRecvMsg.empty() && pnode->vRecvMsg[0].complete()))
                        {
                            fSleep = false;
                        }
                    }
                }
            }
            boost::this_thread::interruption_point();

            // Send messages
            {
                TRY_LOCK(pnode->cs_vSend, lockSend);
                if (lockSend)
                    GetNodeSignals().SendMessages(pnode);
            }
            boost::this_thread::interruption_point();
        }

        {
            LOCK(cs_vNodes);
            BOOST_FOREACH(CNode* pnode, vNodesCopy)
                pnode->Release();
        }

        if (fSleep)
            messageHandlerCondition.timed_wait(lock, boost::posix_time::microsec_clock::universal_time() + boost::posix_time::milliseconds(100));
    }
}






bool BindListenPort(const CService &addrBind, std::string& strError, bool fWhitelisted)
{
    strError = "";
    int nOne = 1;

    // Create socket for listening for incoming connections
    struct sockaddr_storage sockaddr;
    socklen_t len = sizeof(sockaddr);
    if (!addrBind.GetSockAddr((struct sockaddr*)&sockaddr, &len))
    {
        strError = strprintf("Error: Bind address family for %s not supported", addrBind.ToString());
        LogPrintf("%s\n", strError);
        return false;
    }

    SOCKET hListenSocket = socket(((struct sockaddr*)&sockaddr)->sa_family, SOCK_STREAM, IPPROTO_TCP);
    if (hListenSocket == INVALID_SOCKET)
    {
        strError = strprintf("Error: Couldn't open socket for incoming connections (socket returned error %s)", NetworkErrorString(WSAGetLastError()));
        LogPrintf("%s\n", strError);
        return false;
    }
    if (!IsSelectableSocket(hListenSocket))
    {
        strError = "Error: Couldn't create a listenable socket for incoming connections";
        LogPrintf("%s\n", strError);
        return false;
    }


#ifndef WIN32
#ifdef SO_NOSIGPIPE
    // Different way of disabling SIGPIPE on BSD
    setsockopt(hListenSocket, SOL_SOCKET, SO_NOSIGPIPE, (void*)&nOne, sizeof(int));
#endif
    // Allow binding if the port is still in TIME_WAIT state after
    // the program was closed and restarted.
    setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (void*)&nOne, sizeof(int));
    // Disable Nagle's algorithm
    setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (void*)&nOne, sizeof(int));
#else
    setsockopt(hListenSocket, SOL_SOCKET, SO_REUSEADDR, (const char*)&nOne, sizeof(int));
    setsockopt(hListenSocket, IPPROTO_TCP, TCP_NODELAY, (const char*)&nOne, sizeof(int));
#endif

    // Set to non-blocking, incoming connections will also inherit this
    if (!SetSocketNonBlocking(hListenSocket, true)) {
        strError = strprintf("BindListenPort: Setting listening socket to non-blocking failed, error %s\n", NetworkErrorString(WSAGetLastError()));
        LogPrintf("%s\n", strError);
        return false;
    }

    // some systems don't have IPV6_V6ONLY but are always v6only; others do have the option
    // and enable it by default or not. Try to enable it, if possible.
    if (addrBind.IsIPv6()) {
#ifdef IPV6_V6ONLY
#ifdef WIN32
        setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (const char*)&nOne, sizeof(int));
#else
        setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_V6ONLY, (void*)&nOne, sizeof(int));
#endif
#endif
#ifdef WIN32
        int nProtLevel = PROTECTION_LEVEL_UNRESTRICTED;
        setsockopt(hListenSocket, IPPROTO_IPV6, IPV6_PROTECTION_LEVEL, (const char*)&nProtLevel, sizeof(int));
#endif
    }

    if (::bind(hListenSocket, (struct sockaddr*)&sockaddr, len) == SOCKET_ERROR)
    {
        int nErr = WSAGetLastError();
        if (nErr == WSAEADDRINUSE)
            strError = strprintf(_("Unable to bind to %s on this computer. %s is probably already running."), addrBind.ToString(), _(PACKAGE_NAME));
        else
            strError = strprintf(_("Unable to bind to %s on this computer (bind returned error %s)"), addrBind.ToString(), NetworkErrorString(nErr));
        LogPrintf("%s\n", strError);
        CloseSocket(hListenSocket);
        return false;
    }
    LogPrintf("Bound to %s\n", addrBind.ToString());

    // Listen for incoming connections
    if (listen(hListenSocket, SOMAXCONN) == SOCKET_ERROR)
    {
        strError = strprintf(_("Error: Listening for incoming connections failed (listen returned error %s)"), NetworkErrorString(WSAGetLastError()));
        LogPrintf("%s\n", strError);
        CloseSocket(hListenSocket);
        return false;
    }

    vhListenSocket.push_back(ListenSocket(hListenSocket, fWhitelisted));

    if (addrBind.IsRoutable() && fDiscover && !fWhitelisted)
        AddLocal(addrBind, LOCAL_BIND);

    return true;
}

void static Discover(boost::thread_group& threadGroup)
{
    if (!fDiscover)
        return;

#ifdef WIN32
    // Get local host IP
    char pszHostName[256] = "";
    if (gethostname(pszHostName, sizeof(pszHostName)) != SOCKET_ERROR)
    {
        std::vector<CNetAddr> vaddr;
        if (LookupHost(pszHostName, vaddr, 0, true))
        {
            BOOST_FOREACH (const CNetAddr &addr, vaddr)
            {
                if (AddLocal(addr, LOCAL_IF))
                    LogPrintf("%s: %s - %s\n", __func__, pszHostName, addr.ToString());
            }
        }
    }
#else
    // Get local host ip
    struct ifaddrs* myaddrs;
    if (getifaddrs(&myaddrs) == 0)
    {
        for (struct ifaddrs* ifa = myaddrs; ifa != NULL; ifa = ifa->ifa_next)
        {
            if (ifa->ifa_addr == NULL) continue;
            if ((ifa->ifa_flags & IFF_UP) == 0) continue;
            if (strcmp(ifa->ifa_name, "lo") == 0) continue;
            if (strcmp(ifa->ifa_name, "lo0") == 0) continue;
            if (ifa->ifa_addr->sa_family == AF_INET)
            {
                struct sockaddr_in* s4 = (struct sockaddr_in*)(ifa->ifa_addr);
                CNetAddr addr(s4->sin_addr);
                if (AddLocal(addr, LOCAL_IF))
                    LogPrintf("%s: IPv4 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
            }
            else if (ifa->ifa_addr->sa_family == AF_INET6)
            {
                struct sockaddr_in6* s6 = (struct sockaddr_in6*)(ifa->ifa_addr);
                CNetAddr addr(s6->sin6_addr);
                if (AddLocal(addr, LOCAL_IF))
                    LogPrintf("%s: IPv6 %s: %s\n", __func__, ifa->ifa_name, addr.ToString());
            }
        }
        freeifaddrs(myaddrs);
    }
#endif
}

void StartNode(boost::thread_group& threadGroup, CScheduler& scheduler)
{
    uiInterface.InitMessage(_("Loading addresses..."));
    // Load addresses from peers.dat
    int64_t nStart = GetTimeMillis();
    {
        CAddrDB adb;
        if (adb.Read(addrman))
            LogPrintf("Loaded %i addresses from peers.dat  %dms\n", addrman.size(), GetTimeMillis() - nStart);
        else {
            addrman.Clear(); // Addrman can be in an inconsistent state after failure, reset it
            LogPrintf("Invalid or missing peers.dat; recreating\n");
            DumpAddresses();
        }
    }

    uiInterface.InitMessage(_("Loading banlist..."));
    // Load addresses from banlist.dat
    nStart = GetTimeMillis();
    CBanDB bandb;
    banmap_t banmap;
    if (bandb.Read(banmap)) {
        CNode::SetBanned(banmap); // thread save setter
        CNode::SetBannedSetDirty(false); // no need to write down, just read data
        CNode::SweepBanned(); // sweep out unused entries

        LogPrint("net", "Loaded %d banned node ips/subnets from banlist.dat  %dms\n",
            banmap.size(), GetTimeMillis() - nStart);
    } else {
        LogPrintf("Invalid or missing banlist.dat; recreating\n");
        CNode::SetBannedSetDirty(true); // force write
        DumpBanlist();
    }

    fAddressesInitialized = true;

    if (semOutbound == NULL) {
        // initialize semaphore
        int nMaxOutbound = std::min(MAX_OUTBOUND_CONNECTIONS, nMaxConnections);
        semOutbound = new CSemaphore(nMaxOutbound);
    }

    if (pnodeLocalHost == NULL)
        pnodeLocalHost = new CNode(INVALID_SOCKET, CAddress(CService("127.0.0.1", 0), nLocalServices));

    Discover(threadGroup);

    //
    // Start threads
    //

    if (!GetBoolArg("-dnsseed", true))
        LogPrintf("DNS seeding disabled\n");
    else
        threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "dnsseed", &ThreadDNSAddressSeed));

    // Map ports with UPnP
    MapPort(GetBoolArg("-upnp", DEFAULT_UPNP));

    // Send and receive from sockets, accept connections
    threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "net", &ThreadSocketHandler));

    // Initiate outbound connections from -addnode
    threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "addcon", &ThreadOpenAddedConnections));

    // Initiate outbound connections
    threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "opencon", &ThreadOpenConnections));

    // Process messages
    threadGroup.create_thread(boost::bind(&TraceThread<void (*)()>, "msghand", &ThreadMessageHandler));

    // Dump network addresses
    scheduler.scheduleEvery(&DumpData, DUMP_ADDRESSES_INTERVAL);
}

bool StopNode()
{
    LogPrintf("StopNode()\n");
    MapPort(false);
    if (semOutbound)
        for (int i=0; i<MAX_OUTBOUND_CONNECTIONS; i++)
            semOutbound->post();

    if (fAddressesInitialized)
    {
        DumpData();
        fAddressesInitialized = false;
    }

    return true;
}

class CNetCleanup
{
public:
    CNetCleanup() {}

    ~CNetCleanup()
    {
        // Close sockets
        BOOST_FOREACH(CNode* pnode, vNodes)
            if (pnode->hSocket != INVALID_SOCKET)
                CloseSocket(pnode->hSocket);
        BOOST_FOREACH(ListenSocket& hListenSocket, vhListenSocket)
            if (hListenSocket.socket != INVALID_SOCKET)
                if (!CloseSocket(hListenSocket.socket))
                    LogPrintf("CloseSocket(hListenSocket) failed with error %s\n", NetworkErrorString(WSAGetLastError()));

        // clean up some globals (to help leak detection)
        BOOST_FOREACH(CNode *pnode, vNodes)
            delete pnode;
        BOOST_FOREACH(CNode *pnode, vNodesDisconnected)
            delete pnode;
        vNodes.clear();
        vNodesDisconnected.clear();
        vhListenSocket.clear();
        delete semOutbound;
        semOutbound = NULL;
        delete pnodeLocalHost;
        pnodeLocalHost = NULL;

#ifdef WIN32
        // Shutdown Windows Sockets
        WSACleanup();
#endif
    }
}
instance_of_cnetcleanup;


void RelayTransaction(const CTransaction& tx)
{
    CInv inv(MSG_TX, tx.GetHash());
    {
        LOCK(cs_mapRelay);
        // Expire old relay messages
        while (!vRelayExpiration.empty() && vRelayExpiration.front().first < GetTime())
        {
            mapRelay.erase(vRelayExpiration.front().second);
            vRelayExpiration.pop_front();
        }

        mapRelay.insert(std::make_pair(inv.hash, tx));
        vRelayExpiration.push_back(std::make_pair(GetTime() + 15 * 60, inv.hash));
    }
    LOCK(cs_vNodes);
    BOOST_FOREACH(CNode* pnode, vNodes)
    {
        pnode->PushInventory(inv);
    }
}

void CNode::RecordBytesRecv(uint64_t bytes)
{
    LOCK(cs_totalBytesRecv);
    nTotalBytesRecv += bytes;
}

void CNode::RecordBytesSent(uint64_t bytes)
{
    LOCK(cs_totalBytesSent);
    nTotalBytesSent += bytes;

    uint64_t now = GetTime();
    if (nMaxOutboundCycleStartTime + nMaxOutboundTimeframe < now)
    {
        // timeframe expired, reset cycle
        nMaxOutboundCycleStartTime = now;
        nMaxOutboundTotalBytesSentInCycle = 0;
    }

    // TODO, exclude whitebind peers
    nMaxOutboundTotalBytesSentInCycle += bytes;
}

void CNode::SetMaxOutboundTarget(uint64_t limit)
{
    LOCK(cs_totalBytesSent);
    uint64_t recommendedMinimum = (nMaxOutboundTimeframe / 600) * MAX_BLOCK_SIZE;
    nMaxOutboundLimit = limit;

    if (limit > 0 && limit < recommendedMinimum)
        LogPrintf("Max outbound target is very small (%s bytes) and will be overshot. Recommended minimum is %s bytes.\n", nMaxOutboundLimit, recommendedMinimum);
}

uint64_t CNode::GetMaxOutboundTarget()
{
    LOCK(cs_totalBytesSent);
    return nMaxOutboundLimit;
}

uint64_t CNode::GetMaxOutboundTimeframe()
{
    LOCK(cs_totalBytesSent);
    return nMaxOutboundTimeframe;
}

uint64_t CNode::GetMaxOutboundTimeLeftInCycle()
{
    LOCK(cs_totalBytesSent);
    if (nMaxOutboundLimit == 0)
        return 0;

    if (nMaxOutboundCycleStartTime == 0)
        return nMaxOutboundTimeframe;

    uint64_t cycleEndTime = nMaxOutboundCycleStartTime + nMaxOutboundTimeframe;
    uint64_t now = GetTime();
    return (cycleEndTime < now) ? 0 : cycleEndTime - GetTime();
}

void CNode::SetMaxOutboundTimeframe(uint64_t timeframe)
{
    LOCK(cs_totalBytesSent);
    if (nMaxOutboundTimeframe != timeframe)
    {
        // reset measure-cycle in case of changing
        // the timeframe
        nMaxOutboundCycleStartTime = GetTime();
    }
    nMaxOutboundTimeframe = timeframe;
}

bool CNode::OutboundTargetReached(bool historicalBlockServingLimit)
{
    LOCK(cs_totalBytesSent);
    if (nMaxOutboundLimit == 0)
        return false;

    if (historicalBlockServingLimit)
    {
        // keep a large enough buffer to at least relay each block once
        uint64_t timeLeftInCycle = GetMaxOutboundTimeLeftInCycle();
        uint64_t buffer = timeLeftInCycle / 600 * MAX_BLOCK_SIZE;
        if (buffer >= nMaxOutboundLimit || nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit - buffer)
            return true;
    }
    else if (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit)
        return true;

    return false;
}

uint64_t CNode::GetOutboundTargetBytesLeft()
{
    LOCK(cs_totalBytesSent);
    if (nMaxOutboundLimit == 0)
        return 0;

    return (nMaxOutboundTotalBytesSentInCycle >= nMaxOutboundLimit) ? 0 : nMaxOutboundLimit - nMaxOutboundTotalBytesSentInCycle;
}

uint64_t CNode::GetTotalBytesRecv()
{
    LOCK(cs_totalBytesRecv);
    return nTotalBytesRecv;
}

uint64_t CNode::GetTotalBytesSent()
{
    LOCK(cs_totalBytesSent);
    return nTotalBytesSent;
}

void CNode::Fuzz(int nChance)
{
    if (!fSuccessfullyConnected) return; // Don't fuzz initial handshake
    if (GetRand(nChance) != 0) return; // Fuzz 1 of every nChance messages

    switch (GetRand(3))
    {
    case 0:
        // xor a random byte with a random value:
        if (!ssSend.empty()) {
            CDataStream::size_type pos = GetRand(ssSend.size());
            ssSend[pos] ^= (unsigned char)(GetRand(256));
        }
        break;
    case 1:
        // delete a random byte:
        if (!ssSend.empty()) {
            CDataStream::size_type pos = GetRand(ssSend.size());
            ssSend.erase(ssSend.begin()+pos);
        }
        break;
    case 2:
        // insert a random byte at a random position
        {
            CDataStream::size_type pos = GetRand(ssSend.size());
            char ch = (char)GetRand(256);
            ssSend.insert(ssSend.begin()+pos, ch);
        }
        break;
    }
    // Chance of more than one change half the time:
    // (more changes exponentially less likely):
    Fuzz(2);
}

//
// CAddrDB
//

CAddrDB::CAddrDB()
{
    pathAddr = GetDataDir() / "peers.dat";
}

bool CAddrDB::Write(const CAddrMan& addr)
{
    // Generate random temporary filename
    unsigned short randv = 0;
    GetRandBytes((unsigned char*)&randv, sizeof(randv));
    std::string tmpfn = strprintf("peers.dat.%04x", randv);

    // serialize addresses, checksum data up to that point, then append csum
    CDataStream ssPeers(SER_DISK, CLIENT_VERSION);
    ssPeers << FLATDATA(Params().MessageStart());
    ssPeers << addr;
    uint256 hash = Hash(ssPeers.begin(), ssPeers.end());
    ssPeers << hash;

    // open temp output file, and associate with CAutoFile
    boost::filesystem::path pathTmp = GetDataDir() / tmpfn;
    FILE *file = fopen(pathTmp.string().c_str(), "wb");
    CAutoFile fileout(file, SER_DISK, CLIENT_VERSION);
    if (fileout.IsNull())
        return error("%s: Failed to open file %s", __func__, pathTmp.string());

    // Write and commit header, data
    try {
        fileout << ssPeers;
    }
    catch (const std::exception& e) {
        return error("%s: Serialize or I/O error - %s", __func__, e.what());
    }
    FileCommit(fileout.Get());
    fileout.fclose();

    // replace existing peers.dat, if any, with new peers.dat.XXXX
    if (!RenameOver(pathTmp, pathAddr))
        return error("%s: Rename-into-place failed", __func__);

    return true;
}

bool CAddrDB::Read(CAddrMan& addr)
{
    // open input file, and associate with CAutoFile
    FILE *file = fopen(pathAddr.string().c_str(), "rb");
    CAutoFile filein(file, SER_DISK, CLIENT_VERSION);
    if (filein.IsNull())
        return error("%s: Failed to open file %s", __func__, pathAddr.string());

    // use file size to size memory buffer
    uint64_t fileSize = boost::filesystem::file_size(pathAddr);
    uint64_t dataSize = 0;
    // Don't try to resize to a negative number if file is small
    if (fileSize >= sizeof(uint256))
        dataSize = fileSize - sizeof(uint256);
    std::vector<unsigned char> vchData;
    vchData.resize(dataSize);
    uint256 hashIn;

    // read data and checksum from file
    try {
        filein.read((char *)&vchData[0], dataSize);
        filein >> hashIn;
    }
    catch (const std::exception& e) {
        return error("%s: Deserialize or I/O error - %s", __func__, e.what());
    }
    filein.fclose();

    CDataStream ssPeers(vchData, SER_DISK, CLIENT_VERSION);

    // verify stored checksum matches input data
    uint256 hashTmp = Hash(ssPeers.begin(), ssPeers.end());
    if (hashIn != hashTmp)
        return error("%s: Checksum mismatch, data corrupted", __func__);

    return Read(addr, ssPeers);
}

bool CAddrDB::Read(CAddrMan& addr, CDataStream& ssPeers)
{
    unsigned char pchMsgTmp[4];
    try {
        // de-serialize file header (network specific magic number) and ..
        ssPeers >> FLATDATA(pchMsgTmp);

        // ... verify the network matches ours
        if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp)))
            return error("%s: Invalid network magic number", __func__);

        // de-serialize address data into one CAddrMan object
        ssPeers >> addr;
    }
    catch (const std::exception& e) {
        // de-serialization has failed, ensure addrman is left in a clean state
        addr.Clear();
        return error("%s: Deserialize or I/O error - %s", __func__, e.what());
    }

    return true;
}

unsigned int ReceiveFloodSize() { return 1000*GetArg("-maxreceivebuffer", DEFAULT_MAXRECEIVEBUFFER); }
unsigned int SendBufferSize() { return 1000*GetArg("-maxsendbuffer", DEFAULT_MAXSENDBUFFER); }

CNode::CNode(SOCKET hSocketIn, const CAddress& addrIn, const std::string& addrNameIn, bool fInboundIn) :
    ssSend(SER_NETWORK, INIT_PROTO_VERSION),
    addrKnown(5000, 0.001),
    filterInventoryKnown(50000, 0.000001)
{
    nServices = 0;
    hSocket = hSocketIn;
    nRecvVersion = INIT_PROTO_VERSION;
    nLastSend = 0;
    nLastRecv = 0;
    nSendBytes = 0;
    nRecvBytes = 0;
    nTimeConnected = GetTime();
    nTimeOffset = 0;
    addr = addrIn;
    addrName = addrNameIn == "" ? addr.ToStringIPPort() : addrNameIn;
    nVersion = 0;
    strSubVer = "";
    fWhitelisted = false;
    fOneShot = false;
    fClient = false; // set by version message
    fInbound = fInboundIn;
    fNetworkNode = false;
    fSuccessfullyConnected = false;
    fDisconnect = false;
    nRefCount = 0;
    nSendSize = 0;
    nSendOffset = 0;
    hashContinue = uint256();
    nStartingHeight = -1;
    filterInventoryKnown.reset();
    fSendMempool = false;
    fGetAddr = false;
    nNextLocalAddrSend = 0;
    nNextAddrSend = 0;
    nNextInvSend = 0;
    fRelayTxes = false;
    fSentAddr = false;
    pfilter = new CBloomFilter();
    nPingNonceSent = 0;
    nPingUsecStart = 0;
    nPingUsecTime = 0;
    fPingQueued = false;
    nMinPingUsecTime = std::numeric_limits<int64_t>::max();
    minFeeFilter = 0;
    lastSentFeeFilter = 0;
    nextSendTimeFeeFilter = 0;

    BOOST_FOREACH(const std::string &msg, getAllNetMessageTypes())
        mapRecvBytesPerMsgCmd[msg] = 0;
    mapRecvBytesPerMsgCmd[NET_MESSAGE_COMMAND_OTHER] = 0;

    {
        LOCK(cs_nLastNodeId);
        id = nLastNodeId++;
    }

    if (fLogIPs)
        LogPrint("net", "Added connection to %s peer=%d\n", addrName, id);
    else
        LogPrint("net", "Added connection peer=%d\n", id);

    // Be shy and don't send version until we hear
    if (hSocket != INVALID_SOCKET && !fInbound)
        PushVersion();

    GetNodeSignals().InitializeNode(GetId(), this);
}

CNode::~CNode()
{
    CloseSocket(hSocket);

    if (pfilter)
        delete pfilter;

    GetNodeSignals().FinalizeNode(GetId());
}

void CNode::AskFor(const CInv& inv)
{
    if (mapAskFor.size() > MAPASKFOR_MAX_SZ || setAskFor.size() > SETASKFOR_MAX_SZ)
        return;
    // a peer may not have multiple non-responded queue positions for a single inv item
    if (!setAskFor.insert(inv.hash).second)
        return;

    // We're using mapAskFor as a priority queue,
    // the key is the earliest time the request can be sent
    int64_t nRequestTime;
    limitedmap<uint256, int64_t>::const_iterator it = mapAlreadyAskedFor.find(inv.hash);
    if (it != mapAlreadyAskedFor.end())
        nRequestTime = it->second;
    else
        nRequestTime = 0;
    LogPrint("net", "askfor %s  %d (%s) peer=%d\n", inv.ToString(), nRequestTime, DateTimeStrFormat("%H:%M:%S", nRequestTime/1000000), id);

    // Make sure not to reuse time indexes to keep things in the same order
    int64_t nNow = GetTimeMicros() - 1000000;
    static int64_t nLastTime;
    ++nLastTime;
    nNow = std::max(nNow, nLastTime);
    nLastTime = nNow;

    // Each retry is 2 minutes after the last
    nRequestTime = std::max(nRequestTime + 2 * 60 * 1000000, nNow);
    if (it != mapAlreadyAskedFor.end())
        mapAlreadyAskedFor.update(it, nRequestTime);
    else
        mapAlreadyAskedFor.insert(std::make_pair(inv.hash, nRequestTime));
    mapAskFor.insert(std::make_pair(nRequestTime, inv));
}

void CNode::BeginMessage(const char* pszCommand) EXCLUSIVE_LOCK_FUNCTION(cs_vSend)
{
    ENTER_CRITICAL_SECTION(cs_vSend);
    assert(ssSend.size() == 0);
    ssSend << CMessageHeader(Params().MessageStart(), pszCommand, 0);
    LogPrint("net", "sending: %s ", SanitizeString(pszCommand));
}

void CNode::AbortMessage() UNLOCK_FUNCTION(cs_vSend)
{
    ssSend.clear();

    LEAVE_CRITICAL_SECTION(cs_vSend);

    LogPrint("net", "(aborted)\n");
}

void CNode::EndMessage(const char* pszCommand) UNLOCK_FUNCTION(cs_vSend)
{
    // The -*messagestest options are intentionally not documented in the help message,
    // since they are only used during development to debug the networking code and are
    // not intended for end-users.
    if (mapArgs.count("-dropmessagestest") && GetRand(GetArg("-dropmessagestest", 2)) == 0)
    {
        LogPrint("net", "dropmessages DROPPING SEND MESSAGE\n");
        AbortMessage();
        return;
    }
    if (mapArgs.count("-fuzzmessagestest"))
        Fuzz(GetArg("-fuzzmessagestest", 10));

    if (ssSend.size() == 0)
    {
        LEAVE_CRITICAL_SECTION(cs_vSend);
        return;
    }
    // Set the size
    unsigned int nSize = ssSend.size() - CMessageHeader::HEADER_SIZE;
    WriteLE32((uint8_t*)&ssSend[CMessageHeader::MESSAGE_SIZE_OFFSET], nSize);

    //log total amount of bytes per command
    mapSendBytesPerMsgCmd[std::string(pszCommand)] += nSize + CMessageHeader::HEADER_SIZE;

    // Set the checksum
    uint256 hash = Hash(ssSend.begin() + CMessageHeader::HEADER_SIZE, ssSend.end());
    unsigned int nChecksum = 0;
    memcpy(&nChecksum, &hash, sizeof(nChecksum));
    assert(ssSend.size () >= CMessageHeader::CHECKSUM_OFFSET + sizeof(nChecksum));
    memcpy((char*)&ssSend[CMessageHeader::CHECKSUM_OFFSET], &nChecksum, sizeof(nChecksum));

    LogPrint("net", "(%d bytes) peer=%d\n", nSize, id);

    std::deque<CSerializeData>::iterator it = vSendMsg.insert(vSendMsg.end(), CSerializeData());
    ssSend.GetAndClear(*it);
    nSendSize += (*it).size();

    // If write queue empty, attempt "optimistic write"
    if (it == vSendMsg.begin())
        SocketSendData(this);

    LEAVE_CRITICAL_SECTION(cs_vSend);
}

//
// CBanDB
//

CBanDB::CBanDB()
{
    pathBanlist = GetDataDir() / "banlist.dat";
}

bool CBanDB::Write(const banmap_t& banSet)
{
    // Generate random temporary filename
    unsigned short randv = 0;
    GetRandBytes((unsigned char*)&randv, sizeof(randv));
    std::string tmpfn = strprintf("banlist.dat.%04x", randv);

    // serialize banlist, checksum data up to that point, then append csum
    CDataStream ssBanlist(SER_DISK, CLIENT_VERSION);
    ssBanlist << FLATDATA(Params().MessageStart());
    ssBanlist << banSet;
    uint256 hash = Hash(ssBanlist.begin(), ssBanlist.end());
    ssBanlist << hash;

    // open temp output file, and associate with CAutoFile
    boost::filesystem::path pathTmp = GetDataDir() / tmpfn;
    FILE *file = fopen(pathTmp.string().c_str(), "wb");
    CAutoFile fileout(file, SER_DISK, CLIENT_VERSION);
    if (fileout.IsNull())
        return error("%s: Failed to open file %s", __func__, pathTmp.string());

    // Write and commit header, data
    try {
        fileout << ssBanlist;
    }
    catch (const std::exception& e) {
        return error("%s: Serialize or I/O error - %s", __func__, e.what());
    }
    FileCommit(fileout.Get());
    fileout.fclose();

    // replace existing banlist.dat, if any, with new banlist.dat.XXXX
    if (!RenameOver(pathTmp, pathBanlist))
        return error("%s: Rename-into-place failed", __func__);

    return true;
}

bool CBanDB::Read(banmap_t& banSet)
{
    // open input file, and associate with CAutoFile
    FILE *file = fopen(pathBanlist.string().c_str(), "rb");
    CAutoFile filein(file, SER_DISK, CLIENT_VERSION);
    if (filein.IsNull())
        return error("%s: Failed to open file %s", __func__, pathBanlist.string());

    // use file size to size memory buffer
    uint64_t fileSize = boost::filesystem::file_size(pathBanlist);
    uint64_t dataSize = 0;
    // Don't try to resize to a negative number if file is small
    if (fileSize >= sizeof(uint256))
        dataSize = fileSize - sizeof(uint256);
    std::vector<unsigned char> vchData;
    vchData.resize(dataSize);
    uint256 hashIn;

    // read data and checksum from file
    try {
        filein.read((char *)&vchData[0], dataSize);
        filein >> hashIn;
    }
    catch (const std::exception& e) {
        return error("%s: Deserialize or I/O error - %s", __func__, e.what());
    }
    filein.fclose();

    CDataStream ssBanlist(vchData, SER_DISK, CLIENT_VERSION);

    // verify stored checksum matches input data
    uint256 hashTmp = Hash(ssBanlist.begin(), ssBanlist.end());
    if (hashIn != hashTmp)
        return error("%s: Checksum mismatch, data corrupted", __func__);

    unsigned char pchMsgTmp[4];
    try {
        // de-serialize file header (network specific magic number) and ..
        ssBanlist >> FLATDATA(pchMsgTmp);

        // ... verify the network matches ours
        if (memcmp(pchMsgTmp, Params().MessageStart(), sizeof(pchMsgTmp)))
            return error("%s: Invalid network magic number", __func__);

        // de-serialize address data into one CAddrMan object
        ssBanlist >> banSet;
    }
    catch (const std::exception& e) {
        return error("%s: Deserialize or I/O error - %s", __func__, e.what());
    }

    return true;
}

int64_t PoissonNextSend(int64_t nNow, int average_interval_seconds) {
    return nNow + (int64_t)(log1p(GetRand(1ULL << 48) * -0.0000000000000035527136788 /* -1/2^48 */) * average_interval_seconds * -1000000.0 + 0.5);
}