1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
|
/***********************************************************************
* Copyright (c) 2020 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H
#define SECP256K1_MODULE_SCHNORRSIG_TESTS_EXHAUSTIVE_H
#include "../../../include/secp256k1_schnorrsig.h"
#include "main_impl.h"
static const unsigned char invalid_pubkey_bytes[][32] = {
/* 0 */
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
},
/* 2 */
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2
},
/* order */
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 24) & 0xFF,
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 16) & 0xFF,
((EXHAUSTIVE_TEST_ORDER + 0UL) >> 8) & 0xFF,
(EXHAUSTIVE_TEST_ORDER + 0UL) & 0xFF
},
/* order + 1 */
{
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 24) & 0xFF,
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 16) & 0xFF,
((EXHAUSTIVE_TEST_ORDER + 1UL) >> 8) & 0xFF,
(EXHAUSTIVE_TEST_ORDER + 1UL) & 0xFF
},
/* field size */
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x2F
},
/* field size + 1 (note that 1 is legal) */
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFE, 0xFF, 0xFF, 0xFC, 0x30
},
/* 2^256 - 1 */
{
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF,
0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF, 0xFF
}
};
#define NUM_INVALID_KEYS (sizeof(invalid_pubkey_bytes) / sizeof(invalid_pubkey_bytes[0]))
static int secp256k1_hardened_nonce_function_smallint(unsigned char *nonce32, const unsigned char *msg,
size_t msglen,
const unsigned char *key32, const unsigned char *xonly_pk32,
const unsigned char *algo, size_t algolen,
void* data) {
secp256k1_scalar s;
int *idata = data;
(void)msg;
(void)msglen;
(void)key32;
(void)xonly_pk32;
(void)algo;
(void)algolen;
secp256k1_scalar_set_int(&s, *idata);
secp256k1_scalar_get_b32(nonce32, &s);
return 1;
}
static void test_exhaustive_schnorrsig_verify(const secp256k1_context *ctx, const secp256k1_xonly_pubkey* pubkeys, unsigned char (*xonly_pubkey_bytes)[32], const int* parities) {
int d;
uint64_t iter = 0;
/* Iterate over the possible public keys to verify against (through their corresponding DL d). */
for (d = 1; d <= EXHAUSTIVE_TEST_ORDER / 2; ++d) {
int actual_d;
unsigned k;
unsigned char pk32[32];
memcpy(pk32, xonly_pubkey_bytes[d - 1], 32);
actual_d = parities[d - 1] ? EXHAUSTIVE_TEST_ORDER - d : d;
/* Iterate over the possible valid first 32 bytes in the signature, through their corresponding DL k.
Values above EXHAUSTIVE_TEST_ORDER/2 refer to the entries in invalid_pubkey_bytes. */
for (k = 1; k <= EXHAUSTIVE_TEST_ORDER / 2 + NUM_INVALID_KEYS; ++k) {
unsigned char sig64[64];
int actual_k = -1;
int e_done[EXHAUSTIVE_TEST_ORDER] = {0};
int e_count_done = 0;
if (skip_section(&iter)) continue;
if (k <= EXHAUSTIVE_TEST_ORDER / 2) {
memcpy(sig64, xonly_pubkey_bytes[k - 1], 32);
actual_k = parities[k - 1] ? EXHAUSTIVE_TEST_ORDER - k : k;
} else {
memcpy(sig64, invalid_pubkey_bytes[k - 1 - EXHAUSTIVE_TEST_ORDER / 2], 32);
}
/* Randomly generate messages until all challenges have been hit. */
while (e_count_done < EXHAUSTIVE_TEST_ORDER) {
secp256k1_scalar e;
unsigned char msg32[32];
secp256k1_testrand256(msg32);
secp256k1_schnorrsig_challenge(&e, sig64, msg32, sizeof(msg32), pk32);
/* Only do work if we hit a challenge we haven't tried before. */
if (!e_done[e]) {
/* Iterate over the possible valid last 32 bytes in the signature.
0..order=that s value; order+1=random bytes */
int count_valid = 0, s;
for (s = 0; s <= EXHAUSTIVE_TEST_ORDER + 1; ++s) {
int expect_valid, valid;
if (s <= EXHAUSTIVE_TEST_ORDER) {
secp256k1_scalar s_s;
secp256k1_scalar_set_int(&s_s, s);
secp256k1_scalar_get_b32(sig64 + 32, &s_s);
expect_valid = actual_k != -1 && s != EXHAUSTIVE_TEST_ORDER &&
(s_s == (actual_k + actual_d * e) % EXHAUSTIVE_TEST_ORDER);
} else {
secp256k1_testrand256(sig64 + 32);
expect_valid = 0;
}
valid = secp256k1_schnorrsig_verify(ctx, sig64, msg32, sizeof(msg32), &pubkeys[d - 1]);
CHECK(valid == expect_valid);
count_valid += valid;
}
/* Exactly one s value must verify, unless R is illegal. */
CHECK(count_valid == (actual_k != -1));
/* Don't retry other messages that result in the same challenge. */
e_done[e] = 1;
++e_count_done;
}
}
}
}
}
static void test_exhaustive_schnorrsig_sign(const secp256k1_context *ctx, unsigned char (*xonly_pubkey_bytes)[32], const secp256k1_keypair* keypairs, const int* parities) {
int d, k;
uint64_t iter = 0;
secp256k1_schnorrsig_extraparams extraparams = SECP256K1_SCHNORRSIG_EXTRAPARAMS_INIT;
/* Loop over keys. */
for (d = 1; d < EXHAUSTIVE_TEST_ORDER; ++d) {
int actual_d = d;
if (parities[d - 1]) actual_d = EXHAUSTIVE_TEST_ORDER - d;
/* Loop over nonces. */
for (k = 1; k < EXHAUSTIVE_TEST_ORDER; ++k) {
int e_done[EXHAUSTIVE_TEST_ORDER] = {0};
int e_count_done = 0;
unsigned char msg32[32];
unsigned char sig64[64];
int actual_k = k;
if (skip_section(&iter)) continue;
extraparams.noncefp = secp256k1_hardened_nonce_function_smallint;
extraparams.ndata = &k;
if (parities[k - 1]) actual_k = EXHAUSTIVE_TEST_ORDER - k;
/* Generate random messages until all challenges have been tried. */
while (e_count_done < EXHAUSTIVE_TEST_ORDER) {
secp256k1_scalar e;
secp256k1_testrand256(msg32);
secp256k1_schnorrsig_challenge(&e, xonly_pubkey_bytes[k - 1], msg32, sizeof(msg32), xonly_pubkey_bytes[d - 1]);
/* Only do work if we hit a challenge we haven't tried before. */
if (!e_done[e]) {
secp256k1_scalar expected_s = (actual_k + e * actual_d) % EXHAUSTIVE_TEST_ORDER;
unsigned char expected_s_bytes[32];
secp256k1_scalar_get_b32(expected_s_bytes, &expected_s);
/* Invoke the real function to construct a signature. */
CHECK(secp256k1_schnorrsig_sign_custom(ctx, sig64, msg32, sizeof(msg32), &keypairs[d - 1], &extraparams));
/* The first 32 bytes must match the xonly pubkey for the specified k. */
CHECK(secp256k1_memcmp_var(sig64, xonly_pubkey_bytes[k - 1], 32) == 0);
/* The last 32 bytes must match the expected s value. */
CHECK(secp256k1_memcmp_var(sig64 + 32, expected_s_bytes, 32) == 0);
/* Don't retry other messages that result in the same challenge. */
e_done[e] = 1;
++e_count_done;
}
}
}
}
}
static void test_exhaustive_schnorrsig(const secp256k1_context *ctx) {
secp256k1_keypair keypair[EXHAUSTIVE_TEST_ORDER - 1];
secp256k1_xonly_pubkey xonly_pubkey[EXHAUSTIVE_TEST_ORDER - 1];
int parity[EXHAUSTIVE_TEST_ORDER - 1];
unsigned char xonly_pubkey_bytes[EXHAUSTIVE_TEST_ORDER - 1][32];
unsigned i;
/* Verify that all invalid_pubkey_bytes are actually invalid. */
for (i = 0; i < NUM_INVALID_KEYS; ++i) {
secp256k1_xonly_pubkey pk;
CHECK(!secp256k1_xonly_pubkey_parse(ctx, &pk, invalid_pubkey_bytes[i]));
}
/* Construct keypairs and xonly-pubkeys for the entire group. */
for (i = 1; i < EXHAUSTIVE_TEST_ORDER; ++i) {
secp256k1_scalar scalar_i;
unsigned char buf[32];
secp256k1_scalar_set_int(&scalar_i, i);
secp256k1_scalar_get_b32(buf, &scalar_i);
CHECK(secp256k1_keypair_create(ctx, &keypair[i - 1], buf));
CHECK(secp256k1_keypair_xonly_pub(ctx, &xonly_pubkey[i - 1], &parity[i - 1], &keypair[i - 1]));
CHECK(secp256k1_xonly_pubkey_serialize(ctx, xonly_pubkey_bytes[i - 1], &xonly_pubkey[i - 1]));
}
test_exhaustive_schnorrsig_sign(ctx, xonly_pubkey_bytes, keypair, parity);
test_exhaustive_schnorrsig_verify(ctx, xonly_pubkey, xonly_pubkey_bytes, parity);
}
#endif
|