1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
|
/***********************************************************************
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_MODULE_ELLSWIFT_MAIN_H
#define SECP256K1_MODULE_ELLSWIFT_MAIN_H
#include "../../../include/secp256k1.h"
#include "../../../include/secp256k1_ellswift.h"
#include "../../eckey.h"
#include "../../hash.h"
/** c1 = (sqrt(-3)-1)/2 */
static const secp256k1_fe secp256k1_ellswift_c1 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa40);
/** c2 = (-sqrt(-3)-1)/2 = -(c1+1) */
static const secp256k1_fe secp256k1_ellswift_c2 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ee);
/** c3 = (-sqrt(-3)+1)/2 = -c1 = c2+1 */
static const secp256k1_fe secp256k1_ellswift_c3 = SECP256K1_FE_CONST(0x7ae96a2b, 0x657c0710, 0x6e64479e, 0xac3434e9, 0x9cf04975, 0x12f58995, 0xc1396c28, 0x719501ef);
/** c4 = (sqrt(-3)+1)/2 = -c2 = c1+1 */
static const secp256k1_fe secp256k1_ellswift_c4 = SECP256K1_FE_CONST(0x851695d4, 0x9a83f8ef, 0x919bb861, 0x53cbcb16, 0x630fb68a, 0xed0a766a, 0x3ec693d6, 0x8e6afa41);
/** Decode ElligatorSwift encoding (u, t) to a fraction xn/xd representing a curve X coordinate. */
static void secp256k1_ellswift_xswiftec_frac_var(secp256k1_fe *xn, secp256k1_fe *xd, const secp256k1_fe *u, const secp256k1_fe *t) {
/* The implemented algorithm is the following (all operations in GF(p)):
*
* - Let c0 = sqrt(-3) = 0xa2d2ba93507f1df233770c2a797962cc61f6d15da14ecd47d8d27ae1cd5f852.
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - If u^3+7+t^2 = 0, set t = 2*t.
* - Let X = (u^3+7-t^2)/(2*t).
* - Let Y = (X+t)/(c0*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = (X/Y-u)/2 (which is now guaranteed to be a valid x coordinate).
*
* Introducing s=t^2, g=u^3+7, and simplifying x1=-(x2+u) we get:
*
* - Let c0 = ...
* - If u = 0, set u = 1.
* - If t = 0, set t = 1.
* - Let s = t^2
* - Let g = u^3+7
* - If g+s = 0, set t = 2*t, s = 4*s
* - Let X = (g-s)/(2*t).
* - Let Y = (X+t)/(c0*u) = (g+s)/(2*c0*t*u).
* - If x3 = u+4*Y^2 is a valid x coordinate, return it.
* - If x2 = (-X/Y-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Now substitute Y^2 = -(g+s)^2/(12*s*u^2) and X/Y = c0*u*(g-s)/(g+s). This
* means X and Y do not need to be evaluated explicitly anymore.
*
* - ...
* - If g+s = 0, set s = 4*s.
* - If x3 = u-(g+s)^2/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = (-c0*u*(g-s)/(g+s)-u)/2 is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*
* Simplifying x2 using 2 additional constants:
*
* - Let c1 = (c0-1)/2 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = (-c0-1)/2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - ...
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - ...
*
* Writing x3 as a fraction:
*
* - ...
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) ...
* - ...
* Overall, we get:
*
* - Let c1 = 0x851695d49a83f8ef919bb86153cbcb16630fb68aed0a766a3ec693d68e6afa40.
* - Let c2 = 0x7ae96a2b657c07106e64479eac3434e99cf0497512f58995c1396c28719501ee.
* - If u = 0, set u = 1.
* - If t = 0, set s = 1, else set s = t^2.
* - Let g = u^3+7.
* - If g+s = 0, set s = 4*s.
* - If x3 = (3*s*u^3-(g+s)^2)/(3*s*u^2) is a valid x coordinate, return it.
* - If x2 = u*(c1*s+c2*g)/(g+s) is a valid x coordinate, return it.
* - Return x1 = -(x2+u).
*/
secp256k1_fe u1, s, g, p, d, n, l;
u1 = *u;
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&u1), 0)) u1 = secp256k1_fe_one;
secp256k1_fe_sqr(&s, t);
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(t), 0)) s = secp256k1_fe_one;
secp256k1_fe_sqr(&l, &u1); /* l = u^2 */
secp256k1_fe_mul(&g, &l, &u1); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3 + 7 */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&p), 0)) {
secp256k1_fe_mul_int(&s, 4);
/* Recompute p = g+s */
p = g; /* p = g */
secp256k1_fe_add(&p, &s); /* p = g+s */
}
secp256k1_fe_mul(&d, &s, &l); /* d = s*u^2 */
secp256k1_fe_mul_int(&d, 3); /* d = 3*s*u^2 */
secp256k1_fe_sqr(&l, &p); /* l = (g+s)^2 */
secp256k1_fe_negate(&l, &l, 1); /* l = -(g+s)^2 */
secp256k1_fe_mul(&n, &d, &u1); /* n = 3*s*u^3 */
secp256k1_fe_add(&n, &l); /* n = 3*s*u^3-(g+s)^2 */
if (secp256k1_ge_x_frac_on_curve_var(&n, &d)) {
/* Return x3 = n/d = (3*s*u^3-(g+s)^2)/(3*s*u^2) */
*xn = n;
*xd = d;
return;
}
*xd = p;
secp256k1_fe_mul(&l, &secp256k1_ellswift_c1, &s); /* l = c1*s */
secp256k1_fe_mul(&n, &secp256k1_ellswift_c2, &g); /* n = c2*g */
secp256k1_fe_add(&n, &l); /* n = c1*s+c2*g */
secp256k1_fe_mul(&n, &n, &u1); /* n = u*(c1*s+c2*g) */
/* Possible optimization: in the invocation below, p^2 = (g+s)^2 is computed,
* which we already have computed above. This could be deduplicated. */
if (secp256k1_ge_x_frac_on_curve_var(&n, &p)) {
/* Return x2 = n/p = u*(c1*s+c2*g)/(g+s) */
*xn = n;
return;
}
secp256k1_fe_mul(&l, &p, &u1); /* l = u*(g+s) */
secp256k1_fe_add(&n, &l); /* n = u*(c1*s+c2*g)+u*(g+s) */
secp256k1_fe_negate(xn, &n, 2); /* n = -u*(c1*s+c2*g)-u*(g+s) */
#ifdef VERIFY
VERIFY_CHECK(secp256k1_ge_x_frac_on_curve_var(xn, &p));
#endif
/* Return x3 = n/p = -(u*(c1*s+c2*g)/(g+s)+u) */
}
/** Decode ElligatorSwift encoding (u, t) to X coordinate. */
static void secp256k1_ellswift_xswiftec_var(secp256k1_fe *x, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe xn, xd;
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, u, t);
secp256k1_fe_inv_var(&xd, &xd);
secp256k1_fe_mul(x, &xn, &xd);
}
/** Decode ElligatorSwift encoding (u, t) to point P. */
static void secp256k1_ellswift_swiftec_var(secp256k1_ge *p, const secp256k1_fe *u, const secp256k1_fe *t) {
secp256k1_fe x;
secp256k1_ellswift_xswiftec_var(&x, u, t);
secp256k1_ge_set_xo_var(p, &x, secp256k1_fe_is_odd(t));
}
/* Try to complete an ElligatorSwift encoding (u, t) for X coordinate x, given u and x.
*
* There may be up to 8 distinct t values such that (u, t) decodes back to x, but also
* fewer, or none at all. Each such partial inverse can be accessed individually using a
* distinct input argument c (in range 0-7), and some or all of these may return failure.
* The following guarantees exist:
* - Given (x, u), no two distinct c values give the same successful result t.
* - Every successful result maps back to x through secp256k1_ellswift_xswiftec_var.
* - Given (x, u), all t values that map back to x can be reached by combining the
* successful results from this function over all c values, with the exception of:
* - this function cannot be called with u=0
* - no result with t=0 will be returned
* - no result for which u^3 + t^2 + 7 = 0 will be returned.
*
* The rather unusual encoding of bits in c (a large "if" based on the middle bit, and then
* using the low and high bits to pick signs of square roots) is to match the paper's
* encoding more closely: c=0 through c=3 match branches 1..4 in the paper, while c=4 through
* c=7 are copies of those with an additional negation of sqrt(w).
*/
static int secp256k1_ellswift_xswiftec_inv_var(secp256k1_fe *t, const secp256k1_fe *x_in, const secp256k1_fe *u_in, int c) {
/* The implemented algorithm is this (all arithmetic, except involving c, is mod p):
*
* - If (c & 2) = 0:
* - If (-x-u) is a valid X coordinate, fail.
* - Let s=-(u^3+7)/(u^2+u*x+x^2).
* - If s is not square, fail.
* - Let v=x.
* - If (c & 2) = 2:
* - Let s=x-u.
* - If s is not square, fail.
* - Let r=sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist.
* - If (c & 1) = 1 and r = 0, fail.
* - If s=0, fail.
* - Let v=(r/s-u)/2.
* - Let w=sqrt(s).
* - If (c & 5) = 0: return -w*(c3*u + v).
* - If (c & 5) = 1: return w*(c4*u + v).
* - If (c & 5) = 4: return w*(c3*u + v).
* - If (c & 5) = 5: return -w*(c4*u + v).
*/
secp256k1_fe x = *x_in, u = *u_in, g, v, s, m, r, q;
int ret;
secp256k1_fe_normalize_weak(&x);
secp256k1_fe_normalize_weak(&u);
#ifdef VERIFY
VERIFY_CHECK(c >= 0 && c < 8);
VERIFY_CHECK(secp256k1_ge_x_on_curve_var(&x));
#endif
if (!(c & 2)) {
/* c is in {0, 1, 4, 5}. In this case we look for an inverse under the x1 (if c=0 or
* c=4) formula, or x2 (if c=1 or c=5) formula. */
/* If -u-x is a valid X coordinate, fail. This would yield an encoding that roundtrips
* back under the x3 formula instead (which has priority over x1 and x2, so the decoding
* would not match x). */
m = x; /* m = x */
secp256k1_fe_add(&m, &u); /* m = u+x */
secp256k1_fe_negate(&m, &m, 2); /* m = -u-x */
/* Test if (-u-x) is a valid X coordinate. If so, fail. */
if (secp256k1_ge_x_on_curve_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [first part] */
secp256k1_fe_sqr(&s, &m); /* s = (u+x)^2 */
secp256k1_fe_negate(&s, &s, 1); /* s = -(u+x)^2 */
secp256k1_fe_mul(&m, &u, &x); /* m = u*x */
secp256k1_fe_add(&s, &m); /* s = -(u^2 + u*x + x^2) */
/* Note that at this point, s = 0 is impossible. If it were the case:
* s = -(u^2 + u*x + x^2) = 0
* => u^2 + u*x + x^2 = 0
* => (u + 2*x) * (u^2 + u*x + x^2) = 0
* => 2*x^3 + 3*x^2*u + 3*x*u^2 + u^3 = 0
* => (x + u)^3 + x^3 = 0
* => x^3 = -(x + u)^3
* => x^3 + B = (-u - x)^3 + B
*
* However, we know x^3 + B is square (because x is on the curve) and
* that (-u-x)^3 + B is not square (the secp256k1_ge_x_on_curve_var(&m)
* test above would have failed). This is a contradiction, and thus the
* assumption s=0 is false. */
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&s));
#endif
/* If s is not square, fail. We have not fully computed s yet, but s is square iff
* -(u^3+7)*(u^2+u*x+x^2) is square (because a/b is square iff a*b is square and b is
* nonzero). */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_add_int(&g, SECP256K1_B); /* g = u^3+7 */
secp256k1_fe_mul(&m, &s, &g); /* m = -(u^3 + 7)*(u^2 + u*x + x^2) */
if (!secp256k1_fe_is_square_var(&m)) return 0;
/* Let s = -(u^3 + 7)/(u^2 + u*x + x^2) [second part] */
secp256k1_fe_inv_var(&s, &s); /* s = -1/(u^2 + u*x + x^2) [no div by 0] */
secp256k1_fe_mul(&s, &s, &g); /* s = -(u^3 + 7)/(u^2 + u*x + x^2) */
/* Let v = x. */
v = x;
} else {
/* c is in {2, 3, 6, 7}. In this case we look for an inverse under the x3 formula. */
/* Let s = x-u. */
secp256k1_fe_negate(&m, &u, 1); /* m = -u */
s = m; /* s = -u */
secp256k1_fe_add(&s, &x); /* s = x-u */
/* If s is not square, fail. */
if (!secp256k1_fe_is_square_var(&s)) return 0;
/* Let r = sqrt(-s*(4*(u^3+7)+3*u^2*s)); fail if it doesn't exist. */
secp256k1_fe_sqr(&g, &u); /* g = u^2 */
secp256k1_fe_mul(&q, &s, &g); /* q = s*u^2 */
secp256k1_fe_mul_int(&q, 3); /* q = 3*s*u^2 */
secp256k1_fe_mul(&g, &g, &u); /* g = u^3 */
secp256k1_fe_mul_int(&g, 4); /* g = 4*u^3 */
secp256k1_fe_add_int(&g, 4 * SECP256K1_B); /* g = 4*(u^3+7) */
secp256k1_fe_add(&q, &g); /* q = 4*(u^3+7)+3*s*u^2 */
secp256k1_fe_mul(&q, &q, &s); /* q = s*(4*(u^3+7)+3*u^2*s) */
secp256k1_fe_negate(&q, &q, 1); /* q = -s*(4*(u^3+7)+3*u^2*s) */
if (!secp256k1_fe_is_square_var(&q)) return 0;
ret = secp256k1_fe_sqrt(&r, &q); /* r = sqrt(-s*(4*(u^3+7)+3*u^2*s)) */
VERIFY_CHECK(ret);
/* If (c & 1) = 1 and r = 0, fail. */
if (EXPECT((c & 1) && secp256k1_fe_normalizes_to_zero_var(&r), 0)) return 0;
/* If s = 0, fail. */
if (EXPECT(secp256k1_fe_normalizes_to_zero_var(&s), 0)) return 0;
/* Let v = (r/s-u)/2. */
secp256k1_fe_inv_var(&v, &s); /* v = 1/s [no div by 0] */
secp256k1_fe_mul(&v, &v, &r); /* v = r/s */
secp256k1_fe_add(&v, &m); /* v = r/s-u */
secp256k1_fe_half(&v); /* v = (r/s-u)/2 */
}
/* Let w = sqrt(s). */
ret = secp256k1_fe_sqrt(&m, &s); /* m = sqrt(s) = w */
VERIFY_CHECK(ret);
/* Return logic. */
if ((c & 5) == 0 || (c & 5) == 5) {
secp256k1_fe_negate(&m, &m, 1); /* m = -w */
}
/* Now m = {-w if c&5=0 or c&5=5; w otherwise}. */
secp256k1_fe_mul(&u, &u, c&1 ? &secp256k1_ellswift_c4 : &secp256k1_ellswift_c3);
/* u = {c4 if c&1=1; c3 otherwise}*u */
secp256k1_fe_add(&u, &v); /* u = {c4 if c&1=1; c3 otherwise}*u + v */
secp256k1_fe_mul(t, &m, &u);
return 1;
}
/** Use SHA256 as a PRNG, returning SHA256(hasher || cnt).
*
* hasher is a SHA256 object to which an incrementing 4-byte counter is written to generate randomness.
* Writing 13 bytes (4 bytes for counter, plus 9 bytes for the SHA256 padding) cannot cross a
* 64-byte block size boundary (to make sure it only triggers a single SHA256 compression). */
static void secp256k1_ellswift_prng(unsigned char* out32, const secp256k1_sha256 *hasher, uint32_t cnt) {
secp256k1_sha256 hash = *hasher;
unsigned char buf4[4];
#ifdef VERIFY
size_t blocks = hash.bytes >> 6;
#endif
buf4[0] = cnt;
buf4[1] = cnt >> 8;
buf4[2] = cnt >> 16;
buf4[3] = cnt >> 24;
secp256k1_sha256_write(&hash, buf4, 4);
secp256k1_sha256_finalize(&hash, out32);
#ifdef VERIFY
/* Writing and finalizing together should trigger exactly one SHA256 compression. */
VERIFY_CHECK(((hash.bytes) >> 6) == (blocks + 1));
#endif
}
/** Find an ElligatorSwift encoding (u, t) for X coordinate x, and random Y coordinate.
*
* u32 is the 32-byte big endian encoding of u; t is the output field element t that still
* needs encoding.
*
* hasher is a hasher in the secp256k1_ellswift_prng sense, with the same restrictions. */
static void secp256k1_ellswift_xelligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_fe *x, const secp256k1_sha256 *hasher) {
/* Pool of 3-bit branch values. */
unsigned char branch_hash[32];
/* Number of 3-bit values in branch_hash left. */
int branches_left = 0;
/* Field elements u and branch values are extracted from RNG based on hasher for consecutive
* values of cnt. cnt==0 is first used to populate a pool of 64 4-bit branch values. The 64
* cnt values that follow are used to generate field elements u. cnt==65 (and multiples
* thereof) are used to repopulate the pool and start over, if that were ever necessary.
* On average, 4 iterations are needed. */
uint32_t cnt = 0;
while (1) {
int branch;
secp256k1_fe u;
/* If the pool of branch values is empty, populate it. */
if (branches_left == 0) {
secp256k1_ellswift_prng(branch_hash, hasher, cnt++);
branches_left = 64;
}
/* Take a 3-bit branch value from the branch pool (top bit is discarded). */
--branches_left;
branch = (branch_hash[branches_left >> 1] >> ((branches_left & 1) << 2)) & 7;
/* Compute a new u value by hashing. */
secp256k1_ellswift_prng(u32, hasher, cnt++);
/* overflow is not a problem (we prefer uniform u32 over uniform u). */
secp256k1_fe_set_b32_mod(&u, u32);
/* Since u is the output of a hash, it should practically never be 0. We could apply the
* u=0 to u=1 correction here too to deal with that case still, but it's such a low
* probability event that we do not bother. */
#ifdef VERIFY
VERIFY_CHECK(!secp256k1_fe_normalizes_to_zero_var(&u));
#endif
/* Find a remainder t, and return it if found. */
if (EXPECT(secp256k1_ellswift_xswiftec_inv_var(t, x, &u, branch), 0)) break;
}
}
/** Find an ElligatorSwift encoding (u, t) for point P.
*
* This is similar secp256k1_ellswift_xelligatorswift_var, except it takes a full group element p
* as input, and returns an encoding that matches the provided Y coordinate rather than a random
* one.
*/
static void secp256k1_ellswift_elligatorswift_var(unsigned char *u32, secp256k1_fe *t, const secp256k1_ge *p, const secp256k1_sha256 *hasher) {
secp256k1_ellswift_xelligatorswift_var(u32, t, &p->x, hasher);
secp256k1_fe_normalize_var(t);
if (secp256k1_fe_is_odd(t) != secp256k1_fe_is_odd(&p->y)) {
secp256k1_fe_negate(t, t, 1);
secp256k1_fe_normalize_var(t);
}
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_encode". */
static void secp256k1_ellswift_sha256_init_encode(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd1a6524bul;
hash->s[1] = 0x028594b3ul;
hash->s[2] = 0x96e42f4eul;
hash->s[3] = 0x1037a177ul;
hash->s[4] = 0x1b8fcb8bul;
hash->s[5] = 0x56023885ul;
hash->s[6] = 0x2560ede1ul;
hash->s[7] = 0xd626b715ul;
hash->bytes = 64;
}
int secp256k1_ellswift_encode(const secp256k1_context *ctx, unsigned char *ell64, const secp256k1_pubkey *pubkey, const unsigned char *rnd32) {
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(rnd32 != NULL);
if (secp256k1_pubkey_load(ctx, &p, pubkey)) {
secp256k1_fe t;
unsigned char p64[64] = {0};
size_t ser_size;
int ser_ret;
secp256k1_sha256 hash;
/* Set up hasher state; the used RNG is H(pubkey || "\x00"*31 || rnd32 || cnt++), using
* BIP340 tagged hash with tag "secp256k1_ellswift_encode". */
secp256k1_ellswift_sha256_init_encode(&hash);
ser_ret = secp256k1_eckey_pubkey_serialize(&p, p64, &ser_size, 1);
VERIFY_CHECK(ser_ret && ser_size == 33);
secp256k1_sha256_write(&hash, p64, sizeof(p64));
secp256k1_sha256_write(&hash, rnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
return 1;
}
/* Only reached in case the provided pubkey is invalid. */
memset(ell64, 0, 64);
return 0;
}
/** Set hash state to the BIP340 tagged hash midstate for "secp256k1_ellswift_create". */
static void secp256k1_ellswift_sha256_init_create(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0xd29e1bf5ul;
hash->s[1] = 0xf7025f42ul;
hash->s[2] = 0x9b024773ul;
hash->s[3] = 0x094cb7d5ul;
hash->s[4] = 0xe59ed789ul;
hash->s[5] = 0x03bc9786ul;
hash->s[6] = 0x68335b35ul;
hash->s[7] = 0x4e363b53ul;
hash->bytes = 64;
}
int secp256k1_ellswift_create(const secp256k1_context *ctx, unsigned char *ell64, const unsigned char *seckey32, const unsigned char *auxrnd32) {
secp256k1_ge p;
secp256k1_fe t;
secp256k1_sha256 hash;
secp256k1_scalar seckey_scalar;
int ret;
static const unsigned char zero32[32] = {0};
/* Sanity check inputs. */
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(ell64 != NULL);
memset(ell64, 0, 64);
ARG_CHECK(secp256k1_ecmult_gen_context_is_built(&ctx->ecmult_gen_ctx));
ARG_CHECK(seckey32 != NULL);
/* Compute (affine) public key */
ret = secp256k1_ec_pubkey_create_helper(&ctx->ecmult_gen_ctx, &seckey_scalar, &p, seckey32);
secp256k1_declassify(ctx, &p, sizeof(p)); /* not constant time in produced pubkey */
secp256k1_fe_normalize_var(&p.x);
secp256k1_fe_normalize_var(&p.y);
/* Set up hasher state. The used RNG is H(privkey || "\x00"*32 [|| auxrnd32] || cnt++),
* using BIP340 tagged hash with tag "secp256k1_ellswift_create". */
secp256k1_ellswift_sha256_init_create(&hash);
secp256k1_sha256_write(&hash, seckey32, 32);
secp256k1_sha256_write(&hash, zero32, sizeof(zero32));
secp256k1_declassify(ctx, &hash, sizeof(hash)); /* private key is hashed now */
if (auxrnd32) secp256k1_sha256_write(&hash, auxrnd32, 32);
/* Compute ElligatorSwift encoding and construct output. */
secp256k1_ellswift_elligatorswift_var(ell64, &t, &p, &hash); /* puts u in ell64[0..32] */
secp256k1_fe_get_b32(ell64 + 32, &t); /* puts t in ell64[32..64] */
secp256k1_memczero(ell64, 64, !ret);
secp256k1_scalar_clear(&seckey_scalar);
return ret;
}
int secp256k1_ellswift_decode(const secp256k1_context *ctx, secp256k1_pubkey *pubkey, const unsigned char *ell64) {
secp256k1_fe u, t;
secp256k1_ge p;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(pubkey != NULL);
ARG_CHECK(ell64 != NULL);
secp256k1_fe_set_b32_mod(&u, ell64);
secp256k1_fe_set_b32_mod(&t, ell64 + 32);
secp256k1_fe_normalize_var(&t);
secp256k1_ellswift_swiftec_var(&p, &u, &t);
secp256k1_pubkey_save(pubkey, &p);
return 1;
}
static int ellswift_xdh_hash_function_prefix(unsigned char *output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
secp256k1_sha256_initialize(&sha);
secp256k1_sha256_write(&sha, data, 64);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
return 1;
}
/** Set hash state to the BIP340 tagged hash midstate for "bip324_ellswift_xonly_ecdh". */
static void secp256k1_ellswift_sha256_init_bip324(secp256k1_sha256* hash) {
secp256k1_sha256_initialize(hash);
hash->s[0] = 0x8c12d730ul;
hash->s[1] = 0x827bd392ul;
hash->s[2] = 0x9e4fb2eeul;
hash->s[3] = 0x207b373eul;
hash->s[4] = 0x2292bd7aul;
hash->s[5] = 0xaa5441bcul;
hash->s[6] = 0x15c3779ful;
hash->s[7] = 0xcfb52549ul;
hash->bytes = 64;
}
static int ellswift_xdh_hash_function_bip324(unsigned char* output, const unsigned char *x32, const unsigned char *ell_a64, const unsigned char *ell_b64, void *data) {
secp256k1_sha256 sha;
(void)data;
secp256k1_ellswift_sha256_init_bip324(&sha);
secp256k1_sha256_write(&sha, ell_a64, 64);
secp256k1_sha256_write(&sha, ell_b64, 64);
secp256k1_sha256_write(&sha, x32, 32);
secp256k1_sha256_finalize(&sha, output);
return 1;
}
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_prefix = ellswift_xdh_hash_function_prefix;
const secp256k1_ellswift_xdh_hash_function secp256k1_ellswift_xdh_hash_function_bip324 = ellswift_xdh_hash_function_bip324;
int secp256k1_ellswift_xdh(const secp256k1_context *ctx, unsigned char *output, const unsigned char *ell_a64, const unsigned char *ell_b64, const unsigned char *seckey32, int party, secp256k1_ellswift_xdh_hash_function hashfp, void *data) {
int ret = 0;
int overflow;
secp256k1_scalar s;
secp256k1_fe xn, xd, px, u, t;
unsigned char sx[32];
const unsigned char* theirs64;
VERIFY_CHECK(ctx != NULL);
ARG_CHECK(output != NULL);
ARG_CHECK(ell_a64 != NULL);
ARG_CHECK(ell_b64 != NULL);
ARG_CHECK(seckey32 != NULL);
ARG_CHECK(hashfp != NULL);
/* Load remote public key (as fraction). */
theirs64 = party ? ell_a64 : ell_b64;
secp256k1_fe_set_b32_mod(&u, theirs64);
secp256k1_fe_set_b32_mod(&t, theirs64 + 32);
secp256k1_ellswift_xswiftec_frac_var(&xn, &xd, &u, &t);
/* Load private key (using one if invalid). */
secp256k1_scalar_set_b32(&s, seckey32, &overflow);
overflow = secp256k1_scalar_is_zero(&s);
secp256k1_scalar_cmov(&s, &secp256k1_scalar_one, overflow);
/* Compute shared X coordinate. */
secp256k1_ecmult_const_xonly(&px, &xn, &xd, &s, 1);
secp256k1_fe_normalize(&px);
secp256k1_fe_get_b32(sx, &px);
/* Invoke hasher */
ret = hashfp(output, sx, ell_a64, ell_b64, data);
memset(sx, 0, 32);
secp256k1_fe_clear(&px);
secp256k1_scalar_clear(&s);
return !!ret & !overflow;
}
#endif
|