1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
|
#!/usr/bin/env python3
# Copyright (c) 2020 Pieter Wuille
# Distributed under the MIT software license, see the accompanying
# file LICENSE or http://www.opensource.org/licenses/mit-license.php.
"""Native Python (slow) reimplementation of libminisketch' algorithms."""
import random
import unittest
# Irreducible polynomials over GF(2) to use (represented as integers).
#
# Most fields can be defined by multiple such polynomials. Minisketch uses the one with the minimal
# number of nonzero coefficients, and tie-breaking by picking the lexicographically first among
# those.
#
# All polynomials for degrees 2 through 64 (inclusive) are given.
GF2_MODULI = [
None, None,
2**2 + 2**1 + 1,
2**3 + 2**1 + 1,
2**4 + 2**1 + 1,
2**5 + 2**2 + 1,
2**6 + 2**1 + 1,
2**7 + 2**1 + 1,
2**8 + 2**4 + 2**3 + 2**1 + 1,
2**9 + 2**1 + 1,
2**10 + 2**3 + 1,
2**11 + 2**2 + 1,
2**12 + 2**3 + 1,
2**13 + 2**4 + 2**3 + 2**1 + 1,
2**14 + 2**5 + 1,
2**15 + 2**1 + 1,
2**16 + 2**5 + 2**3 + 2**1 + 1,
2**17 + 2**3 + 1,
2**18 + 2**3 + 1,
2**19 + 2**5 + 2**2 + 2**1 + 1,
2**20 + 2**3 + 1,
2**21 + 2**2 + 1,
2**22 + 2**1 + 1,
2**23 + 2**5 + 1,
2**24 + 2**4 + 2**3 + 2**1 + 1,
2**25 + 2**3 + 1,
2**26 + 2**4 + 2**3 + 2**1 + 1,
2**27 + 2**5 + 2**2 + 2**1 + 1,
2**28 + 2**1 + 1,
2**29 + 2**2 + 1,
2**30 + 2**1 + 1,
2**31 + 2**3 + 1,
2**32 + 2**7 + 2**3 + 2**2 + 1,
2**33 + 2**10 + 1,
2**34 + 2**7 + 1,
2**35 + 2**2 + 1,
2**36 + 2**9 + 1,
2**37 + 2**6 + 2**4 + 2**1 + 1,
2**38 + 2**6 + 2**5 + 2**1 + 1,
2**39 + 2**4 + 1,
2**40 + 2**5 + 2**4 + 2**3 + 1,
2**41 + 2**3 + 1,
2**42 + 2**7 + 1,
2**43 + 2**6 + 2**4 + 2**3 + 1,
2**44 + 2**5 + 1,
2**45 + 2**4 + 2**3 + 2**1 + 1,
2**46 + 2**1 + 1,
2**47 + 2**5 + 1,
2**48 + 2**5 + 2**3 + 2**2 + 1,
2**49 + 2**9 + 1,
2**50 + 2**4 + 2**3 + 2**2 + 1,
2**51 + 2**6 + 2**3 + 2**1 + 1,
2**52 + 2**3 + 1,
2**53 + 2**6 + 2**2 + 2**1 + 1,
2**54 + 2**9 + 1,
2**55 + 2**7 + 1,
2**56 + 2**7 + 2**4 + 2**2 + 1,
2**57 + 2**4 + 1,
2**58 + 2**19 + 1,
2**59 + 2**7 + 2**4 + 2**2 + 1,
2**60 + 2**1 + 1,
2**61 + 2**5 + 2**2 + 2**1 + 1,
2**62 + 2**29 + 1,
2**63 + 2**1 + 1,
2**64 + 2**4 + 2**3 + 2**1 + 1
]
class GF2Ops:
"""Class to perform GF(2^field_size) operations on elements represented as integers.
Given that elements are represented as integers, addition is simply xor, and not
exposed here.
"""
def __init__(self, field_size):
"""Construct a GF2Ops object for the specified field size."""
self.field_size = field_size
self._modulus = GF2_MODULI[field_size]
assert self._modulus is not None
def mul2(self, x):
"""Multiply x by 2 in GF(2^field_size)."""
x <<= 1
if x >> self.field_size:
x ^= self._modulus
return x
def mul(self, x, y):
"""Multiply x by y in GF(2^field_size)."""
ret = 0
while y:
if y & 1:
ret ^= x
y >>= 1
x = self.mul2(x)
return ret
def sqr(self, x):
"""Square x in GF(2^field_size)."""
return self.mul(x, x)
def inv(self, x):
"""Compute the inverse of x in GF(2^field_size)."""
assert x != 0
# Use the extended polynomial Euclidean GCD algorithm on (modulus, x), over GF(2).
# See https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor.
t1, t2 = 0, 1
r1, r2 = self._modulus, x
r1l, r2l = self.field_size + 1, r2.bit_length()
while r2:
q = r1l - r2l
r1 ^= r2 << q
t1 ^= t2 << q
r1l = r1.bit_length()
if r1 < r2:
t1, t2 = t2, t1
r1, r2 = r2, r1
r1l, r2l = r2l, r1l
assert r1 == 1
return t1
class TestGF2Ops(unittest.TestCase):
"""Test class for basic arithmetic properties of GF2Ops."""
def field_size_test(self, field_size):
"""Test operations for given field_size."""
gf = GF2Ops(field_size)
for i in range(100):
x = random.randrange(1 << field_size)
y = random.randrange(1 << field_size)
x2 = gf.mul2(x)
xy = gf.mul(x, y)
self.assertEqual(x2, gf.mul(x, 2)) # mul2(x) == x*2
self.assertEqual(x2, gf.mul(2, x)) # mul2(x) == 2*x
self.assertEqual(xy == 0, x == 0 or y == 0)
self.assertEqual(xy == x, y == 1 or x == 0)
self.assertEqual(xy == y, x == 1 or y == 0)
self.assertEqual(xy, gf.mul(y, x)) # x*y == y*x
if i < 10:
xp = x
for _ in range(field_size):
xp = gf.sqr(xp)
self.assertEqual(xp, x) # x^(2^field_size) == x
if y != 0:
yi = gf.inv(y)
self.assertEqual(y == yi, y == 1) # y==1/x iff y==1
self.assertEqual(gf.mul(y, yi), 1) # y*(1/y) == 1
yii = gf.inv(yi)
self.assertEqual(y, yii) # 1/(1/y) == y
if x != 0:
xi = gf.inv(x)
xyi = gf.inv(xy)
self.assertEqual(xyi, gf.mul(xi, yi)) # (1/x)*(1/y) == 1/(x*y)
def test(self):
"""Run tests."""
for field_size in range(2, 65):
self.field_size_test(field_size)
# The operations below operate on polynomials over GF(2^field_size), represented as lists of
# integers:
#
# [a, b, c, ...] = a + b*x + c*x^2 + ...
#
# As an invariant, there are never any trailing zeroes in the list representation.
#
# Examples:
# * [] = 0
# * [3] = 3
# * [0, 1] = x
# * [2, 0, 5] = 5*x^2 + 2
def poly_monic(poly, gf):
"""Return a monic version of the polynomial poly."""
# Multiply every coefficient with the inverse of the top coefficient.
inv = gf.inv(poly[-1])
return [gf.mul(inv, v) for v in poly]
def poly_divmod(poly, mod, gf):
"""Return the polynomial (quotient, remainder) of poly divided by mod."""
assert len(mod) > 0 and mod[-1] == 1 # Require monic mod.
if len(poly) < len(mod):
return ([], poly)
val = list(poly)
div = [0 for _ in range(len(val) - len(mod) + 1)]
while len(val) >= len(mod):
term = val[-1]
div[len(val) - len(mod)] = term
# If the highest coefficient in val is nonzero, subtract a multiple of mod from it.
val.pop()
if term != 0:
for x in range(len(mod) - 1):
val[1 + x - len(mod)] ^= gf.mul(term, mod[x])
# Prune trailing zero coefficients.
while len(val) > 0 and val[-1] == 0:
val.pop()
return div, val
def poly_gcd(a, b, gf):
"""Return the polynomial GCD of a and b."""
if len(a) < len(b):
a, b = b, a
# Use Euclid's algorithm to find the GCD of a and b.
# see https://en.wikipedia.org/wiki/Polynomial_greatest_common_divisor#Euclid's_algorithm.
while len(b) > 0:
b = poly_monic(b, gf)
(_, b), a = poly_divmod(a, b, gf), b
return a
def poly_sqr(poly, gf):
"""Return the square of polynomial poly."""
if len(poly) == 0:
return []
# In characteristic-2 fields, thanks to Frobenius' endomorphism ((a + b)^2 = a^2 + b^2),
# squaring a polynomial is easy: square all the coefficients and interleave with zeroes.
# E.g., (3 + 5*x + 17*x^2)^2 = 3^2 + (5*x)^2 + (17*x^2)^2.
# See https://en.wikipedia.org/wiki/Frobenius_endomorphism.
return [0 if i & 1 else gf.sqr(poly[i // 2]) for i in range(2 * len(poly) - 1)]
def poly_tracemod(poly, param, gf):
"""Compute y + y^2 + y^4 + ... + y^(2^(field_size-1)) mod poly, where y = param*x."""
out = [0, param]
for _ in range(gf.field_size - 1):
# In each loop iteration i, we start with out = y + y^2 + ... + y^(2^i). By squaring that we
# transform it into out = y^2 + y^4 + ... + y^(2^(i+1)).
out = poly_sqr(out, gf)
# Thus, we just need to add y again to it to get out = y + ... + y^(2^(i+1)).
while len(out) < 2:
out.append(0)
out[1] = param
# Finally take a modulus to keep the intermediary polynomials small.
_, out = poly_divmod(out, poly, gf)
return out
def poly_frobeniusmod(poly, gf):
"""Compute x^(2^field_size) mod poly."""
out = [0, 1]
for _ in range(gf.field_size):
_, out = poly_divmod(poly_sqr(out, gf), poly, gf)
return out
def poly_find_roots(poly, gf):
"""Find the roots of poly if fully factorizable with unique roots, [] otherwise."""
assert len(poly) > 0
# If the polynomial is constant (and nonzero), it has no roots.
if len(poly) == 1:
return []
# Make the polynomial monic (which doesn't change its roots).
poly = poly_monic(poly, gf)
# If the polynomial is of the form x+a, return a.
if len(poly) == 2:
return [poly[0]]
# Otherwise, first test that poly can be completely factored into unique roots. The polynomial
# x^(2^fieldsize)-x has every field element once as root. Thus we want to know that that is a
# multiple of poly. Compute x^(field_size) mod poly, which needs to equal x if that is the case
# (unless poly has degree <= 1, but that case is handled above).
if poly_frobeniusmod(poly, gf) != [0, 1]:
return []
def rec_split(poly, randv):
"""Recursively split poly using the Berlekamp trace algorithm."""
# See https://hal.archives-ouvertes.fr/hal-00626997/document.
assert len(poly) > 1 and poly[-1] == 1 # Require a monic poly.
# If poly is of the form x+a, its root is a.
if len(poly) == 2:
return [poly[0]]
# Try consecutive randomization factors randv, until one is found that factors poly.
while True:
# Compute the trace of (randv*x) mod poly. This is a polynomial that maps half of the
# domain to 0, and the other half to 1. Which half that is is controlled by randv.
# By taking it modulo poly, we only add a multiple of poly. Thus the result has at least
# the shared roots of the trace polynomial and poly still, but may have others.
trace = poly_tracemod(poly, randv, gf)
# Using the set {2^i*a for i=0..fieldsize-1} gives optimally independent randv values
# (no more than fieldsize are ever needed).
randv = gf.mul2(randv)
# Now take the GCD of this trace polynomial with poly. The result is a polynomial
# that only has the shared roots of the trace polynomial and poly as roots.
gcd = poly_gcd(trace, poly, gf)
# If the result has a degree higher than 1, and lower than that of poly, we found a
# useful factorization.
if len(gcd) != len(poly) and len(gcd) > 1:
break
# Otherwise, continue with another randv.
# Find the actual factors: the monic version of the GCD above, and poly divided by it.
factor1 = poly_monic(gcd, gf)
factor2, _ = poly_divmod(poly, gcd, gf)
# Recurse.
return rec_split(factor1, randv) + rec_split(factor2, randv)
# Invoke the recursive splitting with a random initial factor, and sort the results.
return sorted(rec_split(poly, random.randrange(1, 1 << gf.field_size)))
class TestPolyFindRoots(unittest.TestCase):
"""Test class for poly_find_roots."""
def field_size_test(self, field_size):
"""Run tests for given field_size."""
gf = GF2Ops(field_size)
for test_size in [0, 1, 2, 3, 10]:
roots = [random.randrange(1 << field_size) for _ in range(test_size)]
roots_set = set(roots)
# Construct a polynomial with all elements of roots as roots (with multiplicity).
poly = [1]
for root in roots:
new_poly = [0] + poly
for n, c in enumerate(poly):
new_poly[n] ^= gf.mul(c, root)
poly = new_poly
# Invoke the root finding algorithm.
found_roots = poly_find_roots(poly, gf)
# The result must match the input, unless any roots were repeated.
if len(roots) == len(roots_set):
self.assertEqual(found_roots, sorted(roots))
else:
self.assertEqual(found_roots, [])
def test(self):
"""Run tests."""
for field_size in range(2, 65):
self.field_size_test(field_size)
def berlekamp_massey(syndromes, gf):
"""Implement the Berlekamp-Massey algorithm.
Takes as input a sequence of GF(2^field_size) elements, and returns the shortest LSFR
that generates it, represented as a polynomial.
"""
# See https://en.wikipedia.org/wiki/Berlekamp%E2%80%93Massey_algorithm.
current = [1]
prev = [1]
b_inv = 1
for n, discrepancy in enumerate(syndromes):
# Compute discrepancy
for i in range(1, len(current)):
discrepancy ^= gf.mul(syndromes[n - i], current[i])
# Correct if discrepancy is nonzero.
if discrepancy:
x = n + 1 - (len(current) - 1) - (len(prev) - 1)
if 2 * (len(current) - 1) <= n:
tmp = list(current)
current.extend(0 for _ in range(len(prev) + x - len(current)))
mul = gf.mul(discrepancy, b_inv)
for i, v in enumerate(prev):
current[i + x] ^= gf.mul(mul, v)
prev = tmp
b_inv = gf.inv(discrepancy)
else:
mul = gf.mul(discrepancy, b_inv)
for i, v in enumerate(prev):
current[i + x] ^= gf.mul(mul, v)
return current
class Minisketch:
"""A Minisketch sketch.
This represents a sketch of a certain capacity, with elements of a certain bit size.
"""
def __init__(self, field_size, capacity):
"""Initialize an empty sketch with the specified field_size size and capacity."""
self.field_size = field_size
self.capacity = capacity
self.odd_syndromes = [0] * capacity
self.gf = GF2Ops(field_size)
def add(self, element):
"""Add an element to this sketch. 1 <= element < 2**field_size."""
sqr = self.gf.sqr(element)
for pos in range(self.capacity):
self.odd_syndromes[pos] ^= element
element = self.gf.mul(sqr, element)
def serialized_size(self):
"""Compute how many bytes a serialization of this sketch will be in size."""
return (self.capacity * self.field_size + 7) // 8
def serialize(self):
"""Serialize this sketch to bytes."""
val = 0
for i in range(self.capacity):
val |= self.odd_syndromes[i] << (self.field_size * i)
return val.to_bytes(self.serialized_size(), 'little')
def deserialize(self, byte_data):
"""Deserialize a byte array into this sketch, overwriting its contents."""
assert len(byte_data) == self.serialized_size()
val = int.from_bytes(byte_data, 'little')
for i in range(self.capacity):
self.odd_syndromes[i] = (val >> (self.field_size * i)) & ((1 << self.field_size) - 1)
def clone(self):
"""Return a clone of this sketch."""
ret = Minisketch(self.field_size, self.capacity)
ret.odd_syndromes = list(self.odd_syndromes)
ret.gf = self.gf
return ret
def merge(self, other):
"""Merge a sketch with another sketch. Corresponds to XOR'ing their serializations."""
assert self.capacity == other.capacity
assert self.field_size == other.field_size
for i in range(self.capacity):
self.odd_syndromes[i] ^= other.odd_syndromes[i]
def decode(self, max_count=None):
"""Decode the contents of this sketch.
Returns either a list of elements or None if undecodable.
"""
# We know the odd syndromes s1=x+y+..., s3=x^3+y^3+..., s5=..., and reconstruct the even
# syndromes from this:
# * s2 = x^2+y^2+.... = (x+y+...)^2 = s1^2
# * s4 = x^4+y^4+.... = (x^2+y^2+...)^2 = s2^2
# * s6 = x^6+y^6+.... = (x^3+y^3+...)^2 = s3^2
all_syndromes = [0 for _ in range(2 * len(self.odd_syndromes))]
for i in range(len(self.odd_syndromes)):
all_syndromes[i * 2] = self.odd_syndromes[i]
all_syndromes[i * 2 + 1] = self.gf.sqr(all_syndromes[i])
# Given the syndromes, find the polynomial that generates them.
poly = berlekamp_massey(all_syndromes, self.gf)
# Deal with failure and trivial cases.
if len(poly) == 0:
return None
if len(poly) == 1:
return []
if max_count is not None and len(poly) > 1 + max_count:
return None
# If the polynomial can be factored into (1-m1*x)*(1-m2*x)*...*(1-mn*x), then {m1,m2,...,mn}
# is our set. As each factor (1-m*x) has 1/m as root, we're really just looking for the
# inverses of the roots. We find these by reversing the order of the coefficients, and
# finding the roots.
roots = poly_find_roots(list(reversed(poly)), self.gf)
if len(roots) == 0:
return None
return roots
class TestMinisketch(unittest.TestCase):
"""Test class for Minisketch."""
@classmethod
def construct_data(cls, field_size, num_a_only, num_b_only, num_both):
"""Construct two random lists of elements in [1..2**field_size-1].
Each list will have unique elements that don't appear in the other (num_a_only in the first
and num_b_only in the second), and num_both elements will appear in both."""
sample = []
# Simulate random.sample here (which doesn't work with ranges over 2**63).
for _ in range(num_a_only + num_b_only + num_both):
while True:
r = random.randrange(1, 1 << field_size)
if r not in sample:
sample.append(r)
break
full_a = sample[:num_a_only + num_both]
full_b = sample[num_a_only:]
random.shuffle(full_a)
random.shuffle(full_b)
return full_a, full_b
def field_size_capacity_test(self, field_size, capacity):
"""Test Minisketch methods for a specific field and capacity."""
used_capacity = random.randrange(capacity + 1)
num_a = random.randrange(used_capacity + 1)
num_both = random.randrange(min(2 * capacity, (1 << field_size) - 1 - used_capacity) + 1)
full_a, full_b = self.construct_data(field_size, num_a, used_capacity - num_a, num_both)
sketch_a = Minisketch(field_size, capacity)
sketch_b = Minisketch(field_size, capacity)
for v in full_a:
sketch_a.add(v)
for v in full_b:
sketch_b.add(v)
sketch_combined = sketch_a.clone()
sketch_b_ser = sketch_b.serialize()
sketch_b_received = Minisketch(field_size, capacity)
sketch_b_received.deserialize(sketch_b_ser)
sketch_combined.merge(sketch_b_received)
decode = sketch_combined.decode()
self.assertEqual(decode, sorted(set(full_a) ^ set(full_b)))
def test(self):
"""Run tests."""
for field_size in range(2, 65):
for capacity in [0, 1, 2, 5, 10, field_size]:
self.field_size_capacity_test(field_size, min(capacity, (1 << field_size) - 1))
if __name__ == '__main__':
unittest.main()
|