aboutsummaryrefslogtreecommitdiff
path: root/src/miner.cpp
blob: 8153fb9f9ecdda8eb8c17ba23d002533453971ed (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2015 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "miner.h"

#include "amount.h"
#include "chain.h"
#include "chainparams.h"
#include "coins.h"
#include "consensus/consensus.h"
#include "consensus/merkle.h"
#include "consensus/validation.h"
#include "hash.h"
#include "main.h"
#include "net.h"
#include "policy/policy.h"
#include "pow.h"
#include "primitives/transaction.h"
#include "script/standard.h"
#include "timedata.h"
#include "txmempool.h"
#include "util.h"
#include "utilmoneystr.h"
#include "validationinterface.h"

#include <algorithm>
#include <boost/thread.hpp>
#include <boost/tuple/tuple.hpp>
#include <queue>

using namespace std;

//////////////////////////////////////////////////////////////////////////////
//
// BitcoinMiner
//

//
// Unconfirmed transactions in the memory pool often depend on other
// transactions in the memory pool. When we select transactions from the
// pool, we select by highest priority or fee rate, so we might consider
// transactions that depend on transactions that aren't yet in the block.

uint64_t nLastBlockTx = 0;
uint64_t nLastBlockSize = 0;
uint64_t nLastBlockCost = 0;

class ScoreCompare
{
public:
    ScoreCompare() {}

    bool operator()(const CTxMemPool::txiter a, const CTxMemPool::txiter b)
    {
        return CompareTxMemPoolEntryByScore()(*b,*a); // Convert to less than
    }
};

int64_t UpdateTime(CBlockHeader* pblock, const Consensus::Params& consensusParams, const CBlockIndex* pindexPrev)
{
    int64_t nOldTime = pblock->nTime;
    int64_t nNewTime = std::max(pindexPrev->GetMedianTimePast()+1, GetAdjustedTime());

    if (nOldTime < nNewTime)
        pblock->nTime = nNewTime;

    // Updating time can change work required on testnet:
    if (consensusParams.fPowAllowMinDifficultyBlocks)
        pblock->nBits = GetNextWorkRequired(pindexPrev, pblock, consensusParams);

    return nNewTime - nOldTime;
}

BlockAssembler::BlockAssembler(const CChainParams& _chainparams)
    : chainparams(_chainparams)
{
    // Block resource limits
    // If neither -blockmaxsize or -blockmaxcost is given, limit to DEFAULT_BLOCK_MAX_*
    // If only one is given, only restrict the specified resource.
    // If both are given, restrict both.
    nBlockMaxCost = DEFAULT_BLOCK_MAX_COST;
    nBlockMaxSize = DEFAULT_BLOCK_MAX_SIZE;
    bool fCostSet = false;
    if (mapArgs.count("-blockmaxcost")) {
        nBlockMaxCost = GetArg("-blockmaxcost", DEFAULT_BLOCK_MAX_COST);
        nBlockMaxSize = MAX_BLOCK_SERIALIZED_SIZE;
        fCostSet = true;
    }
    if (mapArgs.count("-blockmaxsize")) {
        nBlockMaxSize = GetArg("-blockmaxsize", DEFAULT_BLOCK_MAX_SIZE);
        if (!fCostSet) {
            nBlockMaxCost = nBlockMaxSize * WITNESS_SCALE_FACTOR;
        }
    }

    // Limit cost to between 4K and MAX_BLOCK_COST-4K for sanity:
    nBlockMaxCost = std::max((unsigned int)4000, std::min((unsigned int)(MAX_BLOCK_COST-4000), nBlockMaxCost));
    // Limit size to between 1K and MAX_BLOCK_SERIALIZED_SIZE-1K for sanity:
    nBlockMaxSize = std::max((unsigned int)1000, std::min((unsigned int)(MAX_BLOCK_SERIALIZED_SIZE-1000), nBlockMaxSize));

    // Whether we need to account for byte usage (in addition to cost usage)
    fNeedSizeAccounting = (nBlockMaxSize < MAX_BLOCK_SERIALIZED_SIZE-1000);
}

void BlockAssembler::resetBlock()
{
    inBlock.clear();

    // Reserve space for coinbase tx
    nBlockSize = 1000;
    nBlockCost = 4000;
    nBlockSigOpsCost = 400;
    fIncludeWitness = false;

    // These counters do not include coinbase tx
    nBlockTx = 0;
    nFees = 0;

    lastFewTxs = 0;
    blockFinished = false;
}

CBlockTemplate* BlockAssembler::CreateNewBlock(const CScript& scriptPubKeyIn)
{
    resetBlock();

    pblocktemplate.reset(new CBlockTemplate());

    if(!pblocktemplate.get())
        return NULL;
    pblock = &pblocktemplate->block; // pointer for convenience

    // Add dummy coinbase tx as first transaction
    pblock->vtx.push_back(CTransaction());
    pblocktemplate->vTxFees.push_back(-1); // updated at end
    pblocktemplate->vTxSigOpsCost.push_back(-1); // updated at end

    LOCK2(cs_main, mempool.cs);
    CBlockIndex* pindexPrev = chainActive.Tip();
    nHeight = pindexPrev->nHeight + 1;

    pblock->nVersion = ComputeBlockVersion(pindexPrev, chainparams.GetConsensus());
    // -regtest only: allow overriding block.nVersion with
    // -blockversion=N to test forking scenarios
    if (chainparams.MineBlocksOnDemand())
        pblock->nVersion = GetArg("-blockversion", pblock->nVersion);

    pblock->nTime = GetAdjustedTime();
    const int64_t nMedianTimePast = pindexPrev->GetMedianTimePast();

    nLockTimeCutoff = (STANDARD_LOCKTIME_VERIFY_FLAGS & LOCKTIME_MEDIAN_TIME_PAST)
                       ? nMedianTimePast
                       : pblock->GetBlockTime();

    // Decide whether to include witness transactions
    // This is only needed in case the witness softfork activation is reverted
    // (which would require a very deep reorganization) or when
    // -promiscuousmempoolflags is used.
    // TODO: replace this with a call to main to assess validity of a mempool
    // transaction (which in most cases can be a no-op).
    fIncludeWitness = IsWitnessEnabled(pindexPrev, chainparams.GetConsensus());

    addPriorityTxs();
    addPackageTxs();

    nLastBlockTx = nBlockTx;
    nLastBlockSize = nBlockSize;
    nLastBlockCost = nBlockCost;
    LogPrintf("CreateNewBlock(): total size %u txs: %u fees: %ld sigops %d\n", nBlockSize, nBlockTx, nFees, nBlockSigOpsCost);

    // Create coinbase transaction.
    CMutableTransaction coinbaseTx;
    coinbaseTx.vin.resize(1);
    coinbaseTx.vin[0].prevout.SetNull();
    coinbaseTx.vout.resize(1);
    coinbaseTx.vout[0].scriptPubKey = scriptPubKeyIn;
    coinbaseTx.vout[0].nValue = nFees + GetBlockSubsidy(nHeight, chainparams.GetConsensus());
    coinbaseTx.vin[0].scriptSig = CScript() << nHeight << OP_0;
    pblock->vtx[0] = coinbaseTx;
    pblocktemplate->vchCoinbaseCommitment = GenerateCoinbaseCommitment(*pblock, pindexPrev, chainparams.GetConsensus());
    pblocktemplate->vTxFees[0] = -nFees;

    // Fill in header
    pblock->hashPrevBlock  = pindexPrev->GetBlockHash();
    UpdateTime(pblock, chainparams.GetConsensus(), pindexPrev);
    pblock->nBits          = GetNextWorkRequired(pindexPrev, pblock, chainparams.GetConsensus());
    pblock->nNonce         = 0;
    pblocktemplate->vTxSigOpsCost[0] = GetLegacySigOpCount(pblock->vtx[0]);

    CValidationState state;
    if (!TestBlockValidity(state, chainparams, *pblock, pindexPrev, false, false)) {
        throw std::runtime_error(strprintf("%s: TestBlockValidity failed: %s", __func__, FormatStateMessage(state)));
    }

    return pblocktemplate.release();
}

bool BlockAssembler::isStillDependent(CTxMemPool::txiter iter)
{
    BOOST_FOREACH(CTxMemPool::txiter parent, mempool.GetMemPoolParents(iter))
    {
        if (!inBlock.count(parent)) {
            return true;
        }
    }
    return false;
}

void BlockAssembler::onlyUnconfirmed(CTxMemPool::setEntries& testSet)
{
    for (CTxMemPool::setEntries::iterator iit = testSet.begin(); iit != testSet.end(); ) {
        // Only test txs not already in the block
        if (inBlock.count(*iit)) {
            testSet.erase(iit++);
        }
        else {
            iit++;
        }
    }
}

bool BlockAssembler::TestPackage(uint64_t packageSize, int64_t packageSigOpsCost)
{
    // TODO: switch to cost-based accounting for packages instead of vsize-based accounting.
    if (nBlockCost + WITNESS_SCALE_FACTOR * packageSize >= nBlockMaxCost)
        return false;
    if (nBlockSigOpsCost + packageSigOpsCost >= MAX_BLOCK_SIGOPS_COST)
        return false;
    return true;
}

// Perform transaction-level checks before adding to block:
// - transaction finality (locktime)
// - premature witness (in case segwit transactions are added to mempool before
//   segwit activation)
// - serialized size (in case -blockmaxsize is in use)
bool BlockAssembler::TestPackageTransactions(const CTxMemPool::setEntries& package)
{
    uint64_t nPotentialBlockSize = nBlockSize; // only used with fNeedSizeAccounting
    BOOST_FOREACH (const CTxMemPool::txiter it, package) {
        if (!IsFinalTx(it->GetTx(), nHeight, nLockTimeCutoff))
            return false;
        if (!fIncludeWitness && !it->GetTx().wit.IsNull())
            return false;
        if (fNeedSizeAccounting) {
            uint64_t nTxSize = ::GetSerializeSize(it->GetTx(), SER_NETWORK, PROTOCOL_VERSION);
            if (nPotentialBlockSize + nTxSize >= nBlockMaxSize) {
                return false;
            }
            nPotentialBlockSize += nTxSize;
        }
    }
    return true;
}

bool BlockAssembler::TestForBlock(CTxMemPool::txiter iter)
{
    if (nBlockCost + iter->GetTxCost() >= nBlockMaxCost) {
        // If the block is so close to full that no more txs will fit
        // or if we've tried more than 50 times to fill remaining space
        // then flag that the block is finished
        if (nBlockCost >  nBlockMaxCost - 400 || lastFewTxs > 50) {
             blockFinished = true;
             return false;
        }
        // Once we're within 4000 cost of a full block, only look at 50 more txs
        // to try to fill the remaining space.
        if (nBlockCost > nBlockMaxCost - 4000) {
            lastFewTxs++;
        }
        return false;
    }

    if (fNeedSizeAccounting) {
        if (nBlockSize + ::GetSerializeSize(iter->GetTx(), SER_NETWORK, PROTOCOL_VERSION) >= nBlockMaxSize) {
            if (nBlockSize >  nBlockMaxSize - 100 || lastFewTxs > 50) {
                 blockFinished = true;
                 return false;
            }
            if (nBlockSize > nBlockMaxSize - 1000) {
                lastFewTxs++;
            }
            return false;
        }
    }

    if (nBlockSigOpsCost + iter->GetSigOpCost() >= MAX_BLOCK_SIGOPS_COST) {
        // If the block has room for no more sig ops then
        // flag that the block is finished
        if (nBlockSigOpsCost > MAX_BLOCK_SIGOPS_COST - 8) {
            blockFinished = true;
            return false;
        }
        // Otherwise attempt to find another tx with fewer sigops
        // to put in the block.
        return false;
    }

    // Must check that lock times are still valid
    // This can be removed once MTP is always enforced
    // as long as reorgs keep the mempool consistent.
    if (!IsFinalTx(iter->GetTx(), nHeight, nLockTimeCutoff))
        return false;

    return true;
}

void BlockAssembler::AddToBlock(CTxMemPool::txiter iter)
{
    pblock->vtx.push_back(iter->GetTx());
    pblocktemplate->vTxFees.push_back(iter->GetFee());
    pblocktemplate->vTxSigOpsCost.push_back(iter->GetSigOpCost());
    if (fNeedSizeAccounting) {
        nBlockSize += ::GetSerializeSize(iter->GetTx(), SER_NETWORK, PROTOCOL_VERSION);
    }
    nBlockCost += iter->GetTxCost();
    ++nBlockTx;
    nBlockSigOpsCost += iter->GetSigOpCost();
    nFees += iter->GetFee();
    inBlock.insert(iter);

    bool fPrintPriority = GetBoolArg("-printpriority", DEFAULT_PRINTPRIORITY);
    if (fPrintPriority) {
        double dPriority = iter->GetPriority(nHeight);
        CAmount dummy;
        mempool.ApplyDeltas(iter->GetTx().GetHash(), dPriority, dummy);
        LogPrintf("priority %.1f fee %s txid %s\n",
                  dPriority,
                  CFeeRate(iter->GetModifiedFee(), iter->GetTxSize()).ToString(),
                  iter->GetTx().GetHash().ToString());
    }
}

void BlockAssembler::UpdatePackagesForAdded(const CTxMemPool::setEntries& alreadyAdded,
        indexed_modified_transaction_set &mapModifiedTx)
{
    BOOST_FOREACH(const CTxMemPool::txiter it, alreadyAdded) {
        CTxMemPool::setEntries descendants;
        mempool.CalculateDescendants(it, descendants);
        // Insert all descendants (not yet in block) into the modified set
        BOOST_FOREACH(CTxMemPool::txiter desc, descendants) {
            if (alreadyAdded.count(desc))
                continue;
            modtxiter mit = mapModifiedTx.find(desc);
            if (mit == mapModifiedTx.end()) {
                CTxMemPoolModifiedEntry modEntry(desc);
                modEntry.nSizeWithAncestors -= it->GetTxSize();
                modEntry.nModFeesWithAncestors -= it->GetModifiedFee();
                modEntry.nSigOpCostWithAncestors -= it->GetSigOpCost();
                mapModifiedTx.insert(modEntry);
            } else {
                mapModifiedTx.modify(mit, update_for_parent_inclusion(it));
            }
        }
    }
}

// Skip entries in mapTx that are already in a block or are present
// in mapModifiedTx (which implies that the mapTx ancestor state is
// stale due to ancestor inclusion in the block)
// Also skip transactions that we've already failed to add. This can happen if
// we consider a transaction in mapModifiedTx and it fails: we can then
// potentially consider it again while walking mapTx.  It's currently
// guaranteed to fail again, but as a belt-and-suspenders check we put it in
// failedTx and avoid re-evaluation, since the re-evaluation would be using
// cached size/sigops/fee values that are not actually correct.
bool BlockAssembler::SkipMapTxEntry(CTxMemPool::txiter it, indexed_modified_transaction_set &mapModifiedTx, CTxMemPool::setEntries &failedTx)
{
    assert (it != mempool.mapTx.end());
    if (mapModifiedTx.count(it) || inBlock.count(it) || failedTx.count(it))
        return true;
    return false;
}

void BlockAssembler::SortForBlock(const CTxMemPool::setEntries& package, CTxMemPool::txiter entry, std::vector<CTxMemPool::txiter>& sortedEntries)
{
    // Sort package by ancestor count
    // If a transaction A depends on transaction B, then A's ancestor count
    // must be greater than B's.  So this is sufficient to validly order the
    // transactions for block inclusion.
    sortedEntries.clear();
    sortedEntries.insert(sortedEntries.begin(), package.begin(), package.end());
    std::sort(sortedEntries.begin(), sortedEntries.end(), CompareTxIterByAncestorCount());
}

// This transaction selection algorithm orders the mempool based
// on feerate of a transaction including all unconfirmed ancestors.
// Since we don't remove transactions from the mempool as we select them
// for block inclusion, we need an alternate method of updating the feerate
// of a transaction with its not-yet-selected ancestors as we go.
// This is accomplished by walking the in-mempool descendants of selected
// transactions and storing a temporary modified state in mapModifiedTxs.
// Each time through the loop, we compare the best transaction in
// mapModifiedTxs with the next transaction in the mempool to decide what
// transaction package to work on next.
void BlockAssembler::addPackageTxs()
{
    // mapModifiedTx will store sorted packages after they are modified
    // because some of their txs are already in the block
    indexed_modified_transaction_set mapModifiedTx;
    // Keep track of entries that failed inclusion, to avoid duplicate work
    CTxMemPool::setEntries failedTx;

    // Start by adding all descendants of previously added txs to mapModifiedTx
    // and modifying them for their already included ancestors
    UpdatePackagesForAdded(inBlock, mapModifiedTx);

    CTxMemPool::indexed_transaction_set::index<ancestor_score>::type::iterator mi = mempool.mapTx.get<ancestor_score>().begin();
    CTxMemPool::txiter iter;
    while (mi != mempool.mapTx.get<ancestor_score>().end() || !mapModifiedTx.empty())
    {
        // First try to find a new transaction in mapTx to evaluate.
        if (mi != mempool.mapTx.get<ancestor_score>().end() &&
                SkipMapTxEntry(mempool.mapTx.project<0>(mi), mapModifiedTx, failedTx)) {
            ++mi;
            continue;
        }

        // Now that mi is not stale, determine which transaction to evaluate:
        // the next entry from mapTx, or the best from mapModifiedTx?
        bool fUsingModified = false;

        modtxscoreiter modit = mapModifiedTx.get<ancestor_score>().begin();
        if (mi == mempool.mapTx.get<ancestor_score>().end()) {
            // We're out of entries in mapTx; use the entry from mapModifiedTx
            iter = modit->iter;
            fUsingModified = true;
        } else {
            // Try to compare the mapTx entry to the mapModifiedTx entry
            iter = mempool.mapTx.project<0>(mi);
            if (modit != mapModifiedTx.get<ancestor_score>().end() &&
                    CompareModifiedEntry()(*modit, CTxMemPoolModifiedEntry(iter))) {
                // The best entry in mapModifiedTx has higher score
                // than the one from mapTx.
                // Switch which transaction (package) to consider
                iter = modit->iter;
                fUsingModified = true;
            } else {
                // Either no entry in mapModifiedTx, or it's worse than mapTx.
                // Increment mi for the next loop iteration.
                ++mi;
            }
        }

        // We skip mapTx entries that are inBlock, and mapModifiedTx shouldn't
        // contain anything that is inBlock.
        assert(!inBlock.count(iter));

        uint64_t packageSize = iter->GetSizeWithAncestors();
        CAmount packageFees = iter->GetModFeesWithAncestors();
        int64_t packageSigOpsCost = iter->GetSigOpCostWithAncestors();
        if (fUsingModified) {
            packageSize = modit->nSizeWithAncestors;
            packageFees = modit->nModFeesWithAncestors;
            packageSigOpsCost = modit->nSigOpCostWithAncestors;
        }

        if (packageFees < ::minRelayTxFee.GetFee(packageSize)) {
            // Everything else we might consider has a lower fee rate
            return;
        }

        if (!TestPackage(packageSize, packageSigOpsCost)) {
            if (fUsingModified) {
                // Since we always look at the best entry in mapModifiedTx,
                // we must erase failed entries so that we can consider the
                // next best entry on the next loop iteration
                mapModifiedTx.get<ancestor_score>().erase(modit);
                failedTx.insert(iter);
            }
            continue;
        }

        CTxMemPool::setEntries ancestors;
        uint64_t nNoLimit = std::numeric_limits<uint64_t>::max();
        std::string dummy;
        mempool.CalculateMemPoolAncestors(*iter, ancestors, nNoLimit, nNoLimit, nNoLimit, nNoLimit, dummy, false);

        onlyUnconfirmed(ancestors);
        ancestors.insert(iter);

        // Test if all tx's are Final
        if (!TestPackageTransactions(ancestors)) {
            if (fUsingModified) {
                mapModifiedTx.get<ancestor_score>().erase(modit);
                failedTx.insert(iter);
            }
            continue;
        }

        // Package can be added. Sort the entries in a valid order.
        vector<CTxMemPool::txiter> sortedEntries;
        SortForBlock(ancestors, iter, sortedEntries);

        for (size_t i=0; i<sortedEntries.size(); ++i) {
            AddToBlock(sortedEntries[i]);
            // Erase from the modified set, if present
            mapModifiedTx.erase(sortedEntries[i]);
        }

        // Update transactions that depend on each of these
        UpdatePackagesForAdded(ancestors, mapModifiedTx);
    }
}

void BlockAssembler::addPriorityTxs()
{
    // How much of the block should be dedicated to high-priority transactions,
    // included regardless of the fees they pay
    unsigned int nBlockPrioritySize = GetArg("-blockprioritysize", DEFAULT_BLOCK_PRIORITY_SIZE);
    nBlockPrioritySize = std::min(nBlockMaxSize, nBlockPrioritySize);

    if (nBlockPrioritySize == 0) {
        return;
    }

    bool fSizeAccounting = fNeedSizeAccounting;
    fNeedSizeAccounting = true;

    // This vector will be sorted into a priority queue:
    vector<TxCoinAgePriority> vecPriority;
    TxCoinAgePriorityCompare pricomparer;
    std::map<CTxMemPool::txiter, double, CTxMemPool::CompareIteratorByHash> waitPriMap;
    typedef std::map<CTxMemPool::txiter, double, CTxMemPool::CompareIteratorByHash>::iterator waitPriIter;
    double actualPriority = -1;

    vecPriority.reserve(mempool.mapTx.size());
    for (CTxMemPool::indexed_transaction_set::iterator mi = mempool.mapTx.begin();
         mi != mempool.mapTx.end(); ++mi)
    {
        double dPriority = mi->GetPriority(nHeight);
        CAmount dummy;
        mempool.ApplyDeltas(mi->GetTx().GetHash(), dPriority, dummy);
        vecPriority.push_back(TxCoinAgePriority(dPriority, mi));
    }
    std::make_heap(vecPriority.begin(), vecPriority.end(), pricomparer);

    CTxMemPool::txiter iter;
    while (!vecPriority.empty() && !blockFinished) { // add a tx from priority queue to fill the blockprioritysize
        iter = vecPriority.front().second;
        actualPriority = vecPriority.front().first;
        std::pop_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
        vecPriority.pop_back();

        // If tx already in block, skip
        if (inBlock.count(iter)) {
            assert(false); // shouldn't happen for priority txs
            continue;
        }

        // cannot accept witness transactions into a non-witness block
        if (!fIncludeWitness && !iter->GetTx().wit.IsNull())
            continue;

        // If tx is dependent on other mempool txs which haven't yet been included
        // then put it in the waitSet
        if (isStillDependent(iter)) {
            waitPriMap.insert(std::make_pair(iter, actualPriority));
            continue;
        }

        // If this tx fits in the block add it, otherwise keep looping
        if (TestForBlock(iter)) {
            AddToBlock(iter);

            // If now that this txs is added we've surpassed our desired priority size
            // or have dropped below the AllowFreeThreshold, then we're done adding priority txs
            if (nBlockSize >= nBlockPrioritySize || !AllowFree(actualPriority)) {
                break;
            }

            // This tx was successfully added, so
            // add transactions that depend on this one to the priority queue to try again
            BOOST_FOREACH(CTxMemPool::txiter child, mempool.GetMemPoolChildren(iter))
            {
                waitPriIter wpiter = waitPriMap.find(child);
                if (wpiter != waitPriMap.end()) {
                    vecPriority.push_back(TxCoinAgePriority(wpiter->second,child));
                    std::push_heap(vecPriority.begin(), vecPriority.end(), pricomparer);
                    waitPriMap.erase(wpiter);
                }
            }
        }
    }
    fNeedSizeAccounting = fSizeAccounting;
}

void IncrementExtraNonce(CBlock* pblock, const CBlockIndex* pindexPrev, unsigned int& nExtraNonce)
{
    // Update nExtraNonce
    static uint256 hashPrevBlock;
    if (hashPrevBlock != pblock->hashPrevBlock)
    {
        nExtraNonce = 0;
        hashPrevBlock = pblock->hashPrevBlock;
    }
    ++nExtraNonce;
    unsigned int nHeight = pindexPrev->nHeight+1; // Height first in coinbase required for block.version=2
    CMutableTransaction txCoinbase(pblock->vtx[0]);
    txCoinbase.vin[0].scriptSig = (CScript() << nHeight << CScriptNum(nExtraNonce)) + COINBASE_FLAGS;
    assert(txCoinbase.vin[0].scriptSig.size() <= 100);

    pblock->vtx[0] = txCoinbase;
    pblock->hashMerkleRoot = BlockMerkleRoot(*pblock);
}