aboutsummaryrefslogtreecommitdiff
path: root/src/leveldb/table/block.cc
blob: 199d453773ae1d915fb5fe8763312e85cd2b9f9f (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
// Copyright (c) 2011 The LevelDB Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file. See the AUTHORS file for names of contributors.
//
// Decodes the blocks generated by block_builder.cc.

#include "table/block.h"

#include <vector>
#include <algorithm>
#include "leveldb/comparator.h"
#include "table/format.h"
#include "util/coding.h"
#include "util/logging.h"

namespace leveldb {

inline uint32_t Block::NumRestarts() const {
  assert(size_ >= 2*sizeof(uint32_t));
  return DecodeFixed32(data_ + size_ - sizeof(uint32_t));
}

Block::Block(const BlockContents& contents)
    : data_(contents.data.data()),
      size_(contents.data.size()),
      owned_(contents.heap_allocated) {
  if (size_ < sizeof(uint32_t)) {
    size_ = 0;  // Error marker
  } else {
    restart_offset_ = size_ - (1 + NumRestarts()) * sizeof(uint32_t);
    if (restart_offset_ > size_ - sizeof(uint32_t)) {
      // The size is too small for NumRestarts() and therefore
      // restart_offset_ wrapped around.
      size_ = 0;
    }
  }
}

Block::~Block() {
  if (owned_) {
    delete[] data_;
  }
}

// Helper routine: decode the next block entry starting at "p",
// storing the number of shared key bytes, non_shared key bytes,
// and the length of the value in "*shared", "*non_shared", and
// "*value_length", respectively.  Will not derefence past "limit".
//
// If any errors are detected, returns NULL.  Otherwise, returns a
// pointer to the key delta (just past the three decoded values).
static inline const char* DecodeEntry(const char* p, const char* limit,
                                      uint32_t* shared,
                                      uint32_t* non_shared,
                                      uint32_t* value_length) {
  if (limit - p < 3) return NULL;
  *shared = reinterpret_cast<const unsigned char*>(p)[0];
  *non_shared = reinterpret_cast<const unsigned char*>(p)[1];
  *value_length = reinterpret_cast<const unsigned char*>(p)[2];
  if ((*shared | *non_shared | *value_length) < 128) {
    // Fast path: all three values are encoded in one byte each
    p += 3;
  } else {
    if ((p = GetVarint32Ptr(p, limit, shared)) == NULL) return NULL;
    if ((p = GetVarint32Ptr(p, limit, non_shared)) == NULL) return NULL;
    if ((p = GetVarint32Ptr(p, limit, value_length)) == NULL) return NULL;
  }

  if (static_cast<uint32_t>(limit - p) < (*non_shared + *value_length)) {
    return NULL;
  }
  return p;
}

class Block::Iter : public Iterator {
 private:
  const Comparator* const comparator_;
  const char* const data_;      // underlying block contents
  uint32_t const restarts_;     // Offset of restart array (list of fixed32)
  uint32_t const num_restarts_; // Number of uint32_t entries in restart array

  // current_ is offset in data_ of current entry.  >= restarts_ if !Valid
  uint32_t current_;
  uint32_t restart_index_;  // Index of restart block in which current_ falls
  std::string key_;
  Slice value_;
  Status status_;

  inline int Compare(const Slice& a, const Slice& b) const {
    return comparator_->Compare(a, b);
  }

  // Return the offset in data_ just past the end of the current entry.
  inline uint32_t NextEntryOffset() const {
    return (value_.data() + value_.size()) - data_;
  }

  uint32_t GetRestartPoint(uint32_t index) {
    assert(index < num_restarts_);
    return DecodeFixed32(data_ + restarts_ + index * sizeof(uint32_t));
  }

  void SeekToRestartPoint(uint32_t index) {
    key_.clear();
    restart_index_ = index;
    // current_ will be fixed by ParseNextKey();

    // ParseNextKey() starts at the end of value_, so set value_ accordingly
    uint32_t offset = GetRestartPoint(index);
    value_ = Slice(data_ + offset, 0);
  }

 public:
  Iter(const Comparator* comparator,
       const char* data,
       uint32_t restarts,
       uint32_t num_restarts)
      : comparator_(comparator),
        data_(data),
        restarts_(restarts),
        num_restarts_(num_restarts),
        current_(restarts_),
        restart_index_(num_restarts_) {
    assert(num_restarts_ > 0);
  }

  virtual bool Valid() const { return current_ < restarts_; }
  virtual Status status() const { return status_; }
  virtual Slice key() const {
    assert(Valid());
    return key_;
  }
  virtual Slice value() const {
    assert(Valid());
    return value_;
  }

  virtual void Next() {
    assert(Valid());
    ParseNextKey();
  }

  virtual void Prev() {
    assert(Valid());

    // Scan backwards to a restart point before current_
    const uint32_t original = current_;
    while (GetRestartPoint(restart_index_) >= original) {
      if (restart_index_ == 0) {
        // No more entries
        current_ = restarts_;
        restart_index_ = num_restarts_;
        return;
      }
      restart_index_--;
    }

    SeekToRestartPoint(restart_index_);
    do {
      // Loop until end of current entry hits the start of original entry
    } while (ParseNextKey() && NextEntryOffset() < original);
  }

  virtual void Seek(const Slice& target) {
    // Binary search in restart array to find the first restart point
    // with a key >= target
    uint32_t left = 0;
    uint32_t right = num_restarts_ - 1;
    while (left < right) {
      uint32_t mid = (left + right + 1) / 2;
      uint32_t region_offset = GetRestartPoint(mid);
      uint32_t shared, non_shared, value_length;
      const char* key_ptr = DecodeEntry(data_ + region_offset,
                                        data_ + restarts_,
                                        &shared, &non_shared, &value_length);
      if (key_ptr == NULL || (shared != 0)) {
        CorruptionError();
        return;
      }
      Slice mid_key(key_ptr, non_shared);
      if (Compare(mid_key, target) < 0) {
        // Key at "mid" is smaller than "target".  Therefore all
        // blocks before "mid" are uninteresting.
        left = mid;
      } else {
        // Key at "mid" is >= "target".  Therefore all blocks at or
        // after "mid" are uninteresting.
        right = mid - 1;
      }
    }

    // Linear search (within restart block) for first key >= target
    SeekToRestartPoint(left);
    while (true) {
      if (!ParseNextKey()) {
        return;
      }
      if (Compare(key_, target) >= 0) {
        return;
      }
    }
  }

  virtual void SeekToFirst() {
    SeekToRestartPoint(0);
    ParseNextKey();
  }

  virtual void SeekToLast() {
    SeekToRestartPoint(num_restarts_ - 1);
    while (ParseNextKey() && NextEntryOffset() < restarts_) {
      // Keep skipping
    }
  }

 private:
  void CorruptionError() {
    current_ = restarts_;
    restart_index_ = num_restarts_;
    status_ = Status::Corruption("bad entry in block");
    key_.clear();
    value_.clear();
  }

  bool ParseNextKey() {
    current_ = NextEntryOffset();
    const char* p = data_ + current_;
    const char* limit = data_ + restarts_;  // Restarts come right after data
    if (p >= limit) {
      // No more entries to return.  Mark as invalid.
      current_ = restarts_;
      restart_index_ = num_restarts_;
      return false;
    }

    // Decode next entry
    uint32_t shared, non_shared, value_length;
    p = DecodeEntry(p, limit, &shared, &non_shared, &value_length);
    if (p == NULL || key_.size() < shared) {
      CorruptionError();
      return false;
    } else {
      key_.resize(shared);
      key_.append(p, non_shared);
      value_ = Slice(p + non_shared, value_length);
      while (restart_index_ + 1 < num_restarts_ &&
             GetRestartPoint(restart_index_ + 1) < current_) {
        ++restart_index_;
      }
      return true;
    }
  }
};

Iterator* Block::NewIterator(const Comparator* cmp) {
  if (size_ < 2*sizeof(uint32_t)) {
    return NewErrorIterator(Status::Corruption("bad block contents"));
  }
  const uint32_t num_restarts = NumRestarts();
  if (num_restarts == 0) {
    return NewEmptyIterator();
  } else {
    return new Iter(cmp, data_, restart_offset_, num_restarts);
  }
}

}  // namespace leveldb