aboutsummaryrefslogtreecommitdiff
path: root/src/key.h
blob: 7c3e9d4421052a7241d21900bad7111ae8581125 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H

#include <stdexcept>
#include <vector>

#include "allocators.h"
#include "serialize.h"
#include "uint256.h"
#include "util.h"

#include <openssl/ec.h> // for EC_KEY definition

// secp160k1
// const unsigned int PRIVATE_KEY_SIZE = 192;
// const unsigned int PUBLIC_KEY_SIZE  = 41;
// const unsigned int SIGNATURE_SIZE   = 48;
//
// secp192k1
// const unsigned int PRIVATE_KEY_SIZE = 222;
// const unsigned int PUBLIC_KEY_SIZE  = 49;
// const unsigned int SIGNATURE_SIZE   = 57;
//
// secp224k1
// const unsigned int PRIVATE_KEY_SIZE = 250;
// const unsigned int PUBLIC_KEY_SIZE  = 57;
// const unsigned int SIGNATURE_SIZE   = 66;
//
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE  = 65;
// const unsigned int SIGNATURE_SIZE   = 72;
//
// see www.keylength.com
// script supports up to 75 for single byte push

class key_error : public std::runtime_error
{
public:
    explicit key_error(const std::string& str) : std::runtime_error(str) {}
};

class CPubKey {
private:
    std::vector<unsigned char> vchPubKey;
    friend class CKey;

public:
    CPubKey() { }
    CPubKey(const std::vector<unsigned char> &vchPubKeyIn) : vchPubKey(vchPubKeyIn) { }
    friend bool operator==(const CPubKey &a, const CPubKey &b) { return a.vchPubKey == b.vchPubKey; }
    friend bool operator!=(const CPubKey &a, const CPubKey &b) { return a.vchPubKey != b.vchPubKey; }
    friend bool operator<(const CPubKey &a, const CPubKey &b) { return a.vchPubKey < b.vchPubKey; }

    IMPLEMENT_SERIALIZE(
        READWRITE(vchPubKey);
    )

    uint160 GetID() const {
        return Hash160(vchPubKey);
    }

    uint256 GetHash() const {
        return Hash(vchPubKey.begin(), vchPubKey.end());
    }

    bool IsValid() const {
        return vchPubKey.size() == 33 || vchPubKey.size() == 65;
    }

    std::vector<unsigned char> Raw() const {
        return vchPubKey;
    }
};


// secure_allocator is defined in serialize.h
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
// CSecret is a serialization of just the secret parameter (32 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;

/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */
class CKey
{
protected:
    EC_KEY* pkey;
    bool fSet;
    bool fCompressedPubKey;

    void SetCompressedPubKey();

public:

    void Reset();

    CKey();
    CKey(const CKey& b);

    CKey& operator=(const CKey& b);

    ~CKey();

    bool IsNull() const;
    bool IsCompressed() const;

    void MakeNewKey(bool fCompressed);
    bool SetPrivKey(const CPrivKey& vchPrivKey);
    bool SetSecret(const CSecret& vchSecret, bool fCompressed = false);
    CSecret GetSecret(bool &fCompressed) const;
    CPrivKey GetPrivKey() const;
    bool SetPubKey(const CPubKey& vchPubKey);
    CPubKey GetPubKey() const;

    bool Sign(uint256 hash, std::vector<unsigned char>& vchSig);

    // create a compact signature (65 bytes), which allows reconstructing the used public key
    // The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
    // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
    //                  0x1D = second key with even y, 0x1E = second key with odd y
    bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig);

    // reconstruct public key from a compact signature
    // This is only slightly more CPU intensive than just verifying it.
    // If this function succeeds, the recovered public key is guaranteed to be valid
    // (the signature is a valid signature of the given data for that key)
    bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig);

    bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig);

    // Verify a compact signature
    bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig);

    bool IsValid();
};

#endif