aboutsummaryrefslogtreecommitdiff
path: root/src/key.h
blob: 1b122112f3bb7c53509a3a3f710ad1f77e56b18c (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_KEY_H
#define BITCOIN_KEY_H

#include <stdexcept>
#include <vector>

#include "allocators.h"
#include "serialize.h"
#include "uint256.h"
#include "hash.h"

#include <openssl/ec.h> // for EC_KEY definition

// secp160k1
// const unsigned int PRIVATE_KEY_SIZE = 192;
// const unsigned int PUBLIC_KEY_SIZE  = 41;
// const unsigned int SIGNATURE_SIZE   = 48;
//
// secp192k1
// const unsigned int PRIVATE_KEY_SIZE = 222;
// const unsigned int PUBLIC_KEY_SIZE  = 49;
// const unsigned int SIGNATURE_SIZE   = 57;
//
// secp224k1
// const unsigned int PRIVATE_KEY_SIZE = 250;
// const unsigned int PUBLIC_KEY_SIZE  = 57;
// const unsigned int SIGNATURE_SIZE   = 66;
//
// secp256k1:
// const unsigned int PRIVATE_KEY_SIZE = 279;
// const unsigned int PUBLIC_KEY_SIZE  = 65;
// const unsigned int SIGNATURE_SIZE   = 72;
//
// see www.keylength.com
// script supports up to 75 for single byte push

class key_error : public std::runtime_error
{
public:
    explicit key_error(const std::string& str) : std::runtime_error(str) {}
};

/** A reference to a CKey: the Hash160 of its serialized public key */
class CKeyID : public uint160
{
public:
    CKeyID() : uint160(0) { }
    CKeyID(const uint160 &in) : uint160(in) { }
};

/** A reference to a CScript: the Hash160 of its serialization (see script.h) */
class CScriptID : public uint160
{
public:
    CScriptID() : uint160(0) { }
    CScriptID(const uint160 &in) : uint160(in) { }
};

/** An encapsulated public key. */
class CPubKey {
private:
    unsigned char vch[65];

    unsigned int static GetLen(unsigned char chHeader) {
        if (chHeader == 2 || chHeader == 3)
            return 33;
        if (chHeader == 4 || chHeader == 6 || chHeader == 7)
            return 65;
        return 0;
    }

    unsigned char *begin() {
        return vch;
    }

    friend class CKey;

public:
    CPubKey() { vch[0] = 0xFF; }

    CPubKey(const std::vector<unsigned char> &vchPubKeyIn) {
        int len = vchPubKeyIn.empty() ? 0 : GetLen(vchPubKeyIn[0]);
        if (len) {
            memcpy(vch, &vchPubKeyIn[0], len);
        } else {
            vch[0] = 0xFF;
        }
    }

    unsigned int size() const {
        return GetLen(vch[0]);
    }

    const unsigned char *begin() const {
        return vch;
    }

    const unsigned char *end() const {
        return vch+size();
    }

    friend bool operator==(const CPubKey &a, const CPubKey &b) { return memcmp(a.vch, b.vch, a.size()) == 0; }
    friend bool operator!=(const CPubKey &a, const CPubKey &b) { return memcmp(a.vch, b.vch, a.size()) != 0; }
    friend bool operator<(const CPubKey &a, const CPubKey &b) {
        return a.vch[0] < b.vch[0] ||
               (a.vch[0] == b.vch[0] && memcmp(a.vch+1, b.vch+1, a.size() - 1) < 0);
    }

    unsigned int GetSerializeSize(int nType, int nVersion) const {
        return size() + 1;
    }

    template<typename Stream> void Serialize(Stream &s, int nType, int nVersion) const {
        unsigned int len = size();
        ::Serialize(s, VARINT(len), nType, nVersion);
        s.write((char*)vch, len);
    }

    template<typename Stream> void Unserialize(Stream &s, int nType, int nVersion) {
        unsigned int len;
        ::Unserialize(s, VARINT(len), nType, nVersion);
        if (len <= 65) {
            s.read((char*)vch, len);
        } else {
            // invalid pubkey
            vch[0] = 0xFF;
            char dummy;
            while (len--)
                s.read(&dummy, 1);
        }
    }

    CKeyID GetID() const {
        return CKeyID(Hash160(vch, vch+size()));
    }

    uint256 GetHash() const {
        return Hash(vch, vch+size());
    }

    bool IsValid() const {
        return size() > 0;
    }

    bool IsCompressed() const {
        return size() == 33;
    }

    std::vector<unsigned char> Raw() const {
        return std::vector<unsigned char>(vch, vch+size());
    }
};


// secure_allocator is defined in allocators.h
// CPrivKey is a serialized private key, with all parameters included (279 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CPrivKey;
// CSecret is a serialization of just the secret parameter (32 bytes)
typedef std::vector<unsigned char, secure_allocator<unsigned char> > CSecret;

/** An encapsulated OpenSSL Elliptic Curve key (public and/or private) */
class CKey
{
protected:
    EC_KEY* pkey;
    bool fSet;
    bool fCompressedPubKey;

public:
    void SetCompressedPubKey(bool fCompressed = true);

    void Reset();

    CKey();
    CKey(const CKey& b);

    CKey& operator=(const CKey& b);

    ~CKey();

    bool IsNull() const;
    bool IsCompressed() const;

    void MakeNewKey(bool fCompressed);
    bool SetPrivKey(const CPrivKey& vchPrivKey);
    bool SetSecret(const CSecret& vchSecret, bool fCompressed = false);
    CSecret GetSecret(bool &fCompressed) const;
    CPrivKey GetPrivKey() const;
    bool SetPubKey(const CPubKey& vchPubKey);
    CPubKey GetPubKey() const;

    bool Sign(uint256 hash, std::vector<unsigned char>& vchSig);

    // create a compact signature (65 bytes), which allows reconstructing the used public key
    // The format is one header byte, followed by two times 32 bytes for the serialized r and s values.
    // The header byte: 0x1B = first key with even y, 0x1C = first key with odd y,
    //                  0x1D = second key with even y, 0x1E = second key with odd y
    bool SignCompact(uint256 hash, std::vector<unsigned char>& vchSig);

    // reconstruct public key from a compact signature
    // This is only slightly more CPU intensive than just verifying it.
    // If this function succeeds, the recovered public key is guaranteed to be valid
    // (the signature is a valid signature of the given data for that key)
    bool SetCompactSignature(uint256 hash, const std::vector<unsigned char>& vchSig);

    bool Verify(uint256 hash, const std::vector<unsigned char>& vchSig);

    // Verify a compact signature
    bool VerifyCompact(uint256 hash, const std::vector<unsigned char>& vchSig);

    bool IsValid();
};

#endif