1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
|
// Copyright (c) 2009-2012 The Bitcoin developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <openssl/ecdsa.h>
#include <openssl/rand.h>
#include <openssl/obj_mac.h>
#include "key.h"
// anonymous namespace with local implementation code (OpenSSL interaction)
namespace {
// Generate a private key from just the secret parameter
int EC_KEY_regenerate_key(EC_KEY *eckey, BIGNUM *priv_key)
{
int ok = 0;
BN_CTX *ctx = NULL;
EC_POINT *pub_key = NULL;
if (!eckey) return 0;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL)
goto err;
pub_key = EC_POINT_new(group);
if (pub_key == NULL)
goto err;
if (!EC_POINT_mul(group, pub_key, priv_key, NULL, NULL, ctx))
goto err;
EC_KEY_set_private_key(eckey,priv_key);
EC_KEY_set_public_key(eckey,pub_key);
ok = 1;
err:
if (pub_key)
EC_POINT_free(pub_key);
if (ctx != NULL)
BN_CTX_free(ctx);
return(ok);
}
// Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
// recid selects which key is recovered
// if check is non-zero, additional checks are performed
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
{
if (!eckey) return 0;
int ret = 0;
BN_CTX *ctx = NULL;
BIGNUM *x = NULL;
BIGNUM *e = NULL;
BIGNUM *order = NULL;
BIGNUM *sor = NULL;
BIGNUM *eor = NULL;
BIGNUM *field = NULL;
EC_POINT *R = NULL;
EC_POINT *O = NULL;
EC_POINT *Q = NULL;
BIGNUM *rr = NULL;
BIGNUM *zero = NULL;
int n = 0;
int i = recid / 2;
const EC_GROUP *group = EC_KEY_get0_group(eckey);
if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
BN_CTX_start(ctx);
order = BN_CTX_get(ctx);
if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
x = BN_CTX_get(ctx);
if (!BN_copy(x, order)) { ret=-1; goto err; }
if (!BN_mul_word(x, i)) { ret=-1; goto err; }
if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
field = BN_CTX_get(ctx);
if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
if (check)
{
if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
}
if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
n = EC_GROUP_get_degree(group);
e = BN_CTX_get(ctx);
if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
zero = BN_CTX_get(ctx);
if (!BN_zero(zero)) { ret=-1; goto err; }
if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
rr = BN_CTX_get(ctx);
if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
sor = BN_CTX_get(ctx);
if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
eor = BN_CTX_get(ctx);
if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }
ret = 1;
err:
if (ctx) {
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
if (R != NULL) EC_POINT_free(R);
if (O != NULL) EC_POINT_free(O);
if (Q != NULL) EC_POINT_free(Q);
return ret;
}
// RAII Wrapper around OpenSSL's EC_KEY
class CECKey {
private:
EC_KEY *pkey;
public:
CECKey() {
pkey = EC_KEY_new_by_curve_name(NID_secp256k1);
assert(pkey != NULL);
}
~CECKey() {
EC_KEY_free(pkey);
}
void GetSecretBytes(unsigned char vch[32]) const {
const BIGNUM *bn = EC_KEY_get0_private_key(pkey);
assert(bn);
int nBytes = BN_num_bytes(bn);
int n=BN_bn2bin(bn,&vch[32 - nBytes]);
assert(n == nBytes);
memset(vch, 0, 32 - nBytes);
}
void SetSecretBytes(const unsigned char vch[32]) {
BIGNUM bn;
BN_init(&bn);
assert(BN_bin2bn(vch, 32, &bn));
assert(EC_KEY_regenerate_key(pkey, &bn));
BN_clear_free(&bn);
}
void GetPrivKey(CPrivKey &privkey, bool fCompressed) {
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
int nSize = i2d_ECPrivateKey(pkey, NULL);
assert(nSize);
privkey.resize(nSize);
unsigned char* pbegin = &privkey[0];
int nSize2 = i2d_ECPrivateKey(pkey, &pbegin);
assert(nSize == nSize2);
}
bool SetPrivKey(const CPrivKey &privkey) {
const unsigned char* pbegin = &privkey[0];
if (d2i_ECPrivateKey(&pkey, &pbegin, privkey.size())) {
// d2i_ECPrivateKey returns true if parsing succeeds.
// This doesn't necessarily mean the key is valid.
if (EC_KEY_check_key(pkey))
return true;
}
return false;
}
void GetPubKey(CPubKey &pubkey, bool fCompressed) {
EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
int nSize = i2o_ECPublicKey(pkey, NULL);
assert(nSize);
assert(nSize <= 65);
unsigned char c[65];
unsigned char *pbegin = c;
int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
assert(nSize == nSize2);
pubkey.Set(&c[0], &c[nSize]);
}
bool SetPubKey(const CPubKey &pubkey) {
const unsigned char* pbegin = pubkey.begin();
return o2i_ECPublicKey(&pkey, &pbegin, pubkey.size());
}
bool Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) {
vchSig.clear();
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
if (sig == NULL)
return false;
if (BN_is_odd(sig->s)) {
// enforce even S values, by negating the value (modulo the order) if odd
BN_CTX *ctx = BN_CTX_new();
BN_CTX_start(ctx);
const EC_GROUP *group = EC_KEY_get0_group(pkey);
BIGNUM *order = BN_CTX_get(ctx);
EC_GROUP_get_order(group, order, ctx);
BN_sub(sig->s, order, sig->s);
BN_CTX_end(ctx);
BN_CTX_free(ctx);
}
unsigned int nSize = ECDSA_size(pkey);
vchSig.resize(nSize); // Make sure it is big enough
unsigned char *pos = &vchSig[0];
nSize = i2d_ECDSA_SIG(sig, &pos);
ECDSA_SIG_free(sig);
vchSig.resize(nSize); // Shrink to fit actual size
return true;
}
bool Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
// -1 = error, 0 = bad sig, 1 = good
if (ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), &vchSig[0], vchSig.size(), pkey) != 1)
return false;
return true;
}
bool SignCompact(const uint256 &hash, unsigned char *p64, int &rec) {
bool fOk = false;
ECDSA_SIG *sig = ECDSA_do_sign((unsigned char*)&hash, sizeof(hash), pkey);
if (sig==NULL)
return false;
memset(p64, 0, 64);
int nBitsR = BN_num_bits(sig->r);
int nBitsS = BN_num_bits(sig->s);
if (nBitsR <= 256 && nBitsS <= 256) {
CPubKey pubkey;
GetPubKey(pubkey, true);
for (int i=0; i<4; i++) {
CECKey keyRec;
if (ECDSA_SIG_recover_key_GFp(keyRec.pkey, sig, (unsigned char*)&hash, sizeof(hash), i, 1) == 1) {
CPubKey pubkeyRec;
keyRec.GetPubKey(pubkeyRec, true);
if (pubkeyRec == pubkey) {
rec = i;
fOk = true;
break;
}
}
}
assert(fOk);
BN_bn2bin(sig->r,&p64[32-(nBitsR+7)/8]);
BN_bn2bin(sig->s,&p64[64-(nBitsS+7)/8]);
}
ECDSA_SIG_free(sig);
return fOk;
}
// reconstruct public key from a compact signature
// This is only slightly more CPU intensive than just verifying it.
// If this function succeeds, the recovered public key is guaranteed to be valid
// (the signature is a valid signature of the given data for that key)
bool Recover(const uint256 &hash, const unsigned char *p64, int rec)
{
if (rec<0 || rec>=3)
return false;
ECDSA_SIG *sig = ECDSA_SIG_new();
BN_bin2bn(&p64[0], 32, sig->r);
BN_bin2bn(&p64[32], 32, sig->s);
bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
ECDSA_SIG_free(sig);
return ret;
}
};
}; // end of anonymous namespace
bool CKey::Check(const unsigned char *vch) {
// Do not convert to OpenSSL's data structures for range-checking keys,
// it's easy enough to do directly.
static const unsigned char vchMax[32] = {
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFE,
0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,
0xBF,0xD2,0x5E,0x8C,0xD0,0x36,0x41,0x40
};
bool fIsZero = true;
for (int i=0; i<32 && fIsZero; i++)
if (vch[i] != 0)
fIsZero = false;
if (fIsZero)
return false;
for (int i=0; i<32; i++) {
if (vch[i] < vchMax[i])
return true;
if (vch[i] > vchMax[i])
return false;
}
return true;
}
void CKey::MakeNewKey(bool fCompressedIn) {
do {
RAND_bytes(vch, sizeof(vch));
} while (!Check(vch));
fValid = true;
fCompressed = fCompressedIn;
}
bool CKey::SetPrivKey(const CPrivKey &privkey, bool fCompressedIn) {
CECKey key;
if (!key.SetPrivKey(privkey))
return false;
key.GetSecretBytes(vch);
fCompressed = fCompressedIn;
fValid = true;
return true;
}
CPrivKey CKey::GetPrivKey() const {
assert(fValid);
CECKey key;
key.SetSecretBytes(vch);
CPrivKey privkey;
key.GetPrivKey(privkey, fCompressed);
return privkey;
}
CPubKey CKey::GetPubKey() const {
assert(fValid);
CECKey key;
key.SetSecretBytes(vch);
CPubKey pubkey;
key.GetPubKey(pubkey, fCompressed);
return pubkey;
}
bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
CECKey key;
key.SetSecretBytes(vch);
return key.Sign(hash, vchSig);
}
bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
if (!fValid)
return false;
CECKey key;
key.SetSecretBytes(vch);
vchSig.resize(65);
int rec = -1;
if (!key.SignCompact(hash, &vchSig[1], rec))
return false;
assert(rec != -1);
vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
return true;
}
bool CPubKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid())
return false;
CECKey key;
if (!key.SetPubKey(*this))
return false;
if (!key.Verify(hash, vchSig))
return false;
return true;
}
bool CPubKey::RecoverCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
if (vchSig.size() != 65)
return false;
CECKey key;
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
return false;
key.GetPubKey(*this, (vchSig[0] - 27) & 4);
return true;
}
bool CPubKey::VerifyCompact(const uint256 &hash, const std::vector<unsigned char>& vchSig) const {
if (!IsValid())
return false;
if (vchSig.size() != 65)
return false;
CECKey key;
if (!key.Recover(hash, &vchSig[1], (vchSig[0] - 27) & ~4))
return false;
CPubKey pubkeyRec;
key.GetPubKey(pubkeyRec, IsCompressed());
if (*this != pubkeyRec)
return false;
return true;
}
bool CPubKey::IsFullyValid() const {
if (!IsValid())
return false;
CECKey key;
if (!key.SetPubKey(*this))
return false;
return true;
}
bool CPubKey::Decompress() {
if (!IsValid())
return false;
CECKey key;
if (!key.SetPubKey(*this))
return false;
key.GetPubKey(*this, false);
return true;
}
|