1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
|
// Copyright (c) 2017-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#include <index/disktxpos.h>
#include <index/txindex.h>
#include <node/blockstorage.h>
#include <node/ui_interface.h>
#include <shutdown.h>
#include <util/system.h>
#include <util/translation.h>
#include <validation.h>
constexpr uint8_t DB_BEST_BLOCK{'B'};
constexpr uint8_t DB_TXINDEX{'t'};
constexpr uint8_t DB_TXINDEX_BLOCK{'T'};
std::unique_ptr<TxIndex> g_txindex;
/** Access to the txindex database (indexes/txindex/) */
class TxIndex::DB : public BaseIndex::DB
{
public:
explicit DB(size_t n_cache_size, bool f_memory = false, bool f_wipe = false);
/// Read the disk location of the transaction data with the given hash. Returns false if the
/// transaction hash is not indexed.
bool ReadTxPos(const uint256& txid, CDiskTxPos& pos) const;
/// Write a batch of transaction positions to the DB.
bool WriteTxs(const std::vector<std::pair<uint256, CDiskTxPos>>& v_pos);
/// Migrate txindex data from the block tree DB, where it may be for older nodes that have not
/// been upgraded yet to the new database.
bool MigrateData(CBlockTreeDB& block_tree_db, const CBlockLocator& best_locator);
};
TxIndex::DB::DB(size_t n_cache_size, bool f_memory, bool f_wipe) :
BaseIndex::DB(gArgs.GetDataDirNet() / "indexes" / "txindex", n_cache_size, f_memory, f_wipe)
{}
bool TxIndex::DB::ReadTxPos(const uint256 &txid, CDiskTxPos& pos) const
{
return Read(std::make_pair(DB_TXINDEX, txid), pos);
}
bool TxIndex::DB::WriteTxs(const std::vector<std::pair<uint256, CDiskTxPos>>& v_pos)
{
CDBBatch batch(*this);
for (const auto& tuple : v_pos) {
batch.Write(std::make_pair(DB_TXINDEX, tuple.first), tuple.second);
}
return WriteBatch(batch);
}
/*
* Safely persist a transfer of data from the old txindex database to the new one, and compact the
* range of keys updated. This is used internally by MigrateData.
*/
static void WriteTxIndexMigrationBatches(CDBWrapper& newdb, CDBWrapper& olddb,
CDBBatch& batch_newdb, CDBBatch& batch_olddb,
const std::pair<uint8_t, uint256>& begin_key,
const std::pair<uint8_t, uint256>& end_key)
{
// Sync new DB changes to disk before deleting from old DB.
newdb.WriteBatch(batch_newdb, /*fSync=*/ true);
olddb.WriteBatch(batch_olddb);
olddb.CompactRange(begin_key, end_key);
batch_newdb.Clear();
batch_olddb.Clear();
}
bool TxIndex::DB::MigrateData(CBlockTreeDB& block_tree_db, const CBlockLocator& best_locator)
{
// The prior implementation of txindex was always in sync with block index
// and presence was indicated with a boolean DB flag. If the flag is set,
// this means the txindex from a previous version is valid and in sync with
// the chain tip. The first step of the migration is to unset the flag and
// write the chain hash to a separate key, DB_TXINDEX_BLOCK. After that, the
// index entries are copied over in batches to the new database. Finally,
// DB_TXINDEX_BLOCK is erased from the old database and the block hash is
// written to the new database.
//
// Unsetting the boolean flag ensures that if the node is downgraded to a
// previous version, it will not see a corrupted, partially migrated index
// -- it will see that the txindex is disabled. When the node is upgraded
// again, the migration will pick up where it left off and sync to the block
// with hash DB_TXINDEX_BLOCK.
bool f_legacy_flag = false;
block_tree_db.ReadFlag("txindex", f_legacy_flag);
if (f_legacy_flag) {
if (!block_tree_db.Write(DB_TXINDEX_BLOCK, best_locator)) {
return error("%s: cannot write block indicator", __func__);
}
if (!block_tree_db.WriteFlag("txindex", false)) {
return error("%s: cannot write block index db flag", __func__);
}
}
CBlockLocator locator;
if (!block_tree_db.Read(DB_TXINDEX_BLOCK, locator)) {
return true;
}
int64_t count = 0;
LogPrintf("Upgrading txindex database... [0%%]\n");
uiInterface.ShowProgress(_("Upgrading txindex database").translated, 0, true);
int report_done = 0;
const size_t batch_size = 1 << 24; // 16 MiB
CDBBatch batch_newdb(*this);
CDBBatch batch_olddb(block_tree_db);
std::pair<uint8_t, uint256> key;
std::pair<uint8_t, uint256> begin_key{DB_TXINDEX, uint256()};
std::pair<uint8_t, uint256> prev_key = begin_key;
bool interrupted = false;
std::unique_ptr<CDBIterator> cursor(block_tree_db.NewIterator());
for (cursor->Seek(begin_key); cursor->Valid(); cursor->Next()) {
if (ShutdownRequested()) {
interrupted = true;
break;
}
if (!cursor->GetKey(key)) {
return error("%s: cannot get key from valid cursor", __func__);
}
if (key.first != DB_TXINDEX) {
break;
}
// Log progress every 10%.
if (++count % 256 == 0) {
// Since txids are uniformly random and traversed in increasing order, the high 16 bits
// of the hash can be used to estimate the current progress.
const uint256& txid = key.second;
uint32_t high_nibble =
(static_cast<uint32_t>(*(txid.begin() + 0)) << 8) +
(static_cast<uint32_t>(*(txid.begin() + 1)) << 0);
int percentage_done = (int)(high_nibble * 100.0 / 65536.0 + 0.5);
uiInterface.ShowProgress(_("Upgrading txindex database").translated, percentage_done, true);
if (report_done < percentage_done/10) {
LogPrintf("Upgrading txindex database... [%d%%]\n", percentage_done);
report_done = percentage_done/10;
}
}
CDiskTxPos value;
if (!cursor->GetValue(value)) {
return error("%s: cannot parse txindex record", __func__);
}
batch_newdb.Write(key, value);
batch_olddb.Erase(key);
if (batch_newdb.SizeEstimate() > batch_size || batch_olddb.SizeEstimate() > batch_size) {
// NOTE: it's OK to delete the key pointed at by the current DB cursor while iterating
// because LevelDB iterators are guaranteed to provide a consistent view of the
// underlying data, like a lightweight snapshot.
WriteTxIndexMigrationBatches(*this, block_tree_db,
batch_newdb, batch_olddb,
prev_key, key);
prev_key = key;
}
}
// If these final DB batches complete the migration, write the best block
// hash marker to the new database and delete from the old one. This signals
// that the former is fully caught up to that point in the blockchain and
// that all txindex entries have been removed from the latter.
if (!interrupted) {
batch_olddb.Erase(DB_TXINDEX_BLOCK);
batch_newdb.Write(DB_BEST_BLOCK, locator);
}
WriteTxIndexMigrationBatches(*this, block_tree_db,
batch_newdb, batch_olddb,
begin_key, key);
if (interrupted) {
LogPrintf("[CANCELLED].\n");
return false;
}
uiInterface.ShowProgress("", 100, false);
LogPrintf("[DONE].\n");
return true;
}
TxIndex::TxIndex(size_t n_cache_size, bool f_memory, bool f_wipe)
: m_db(std::make_unique<TxIndex::DB>(n_cache_size, f_memory, f_wipe))
{}
TxIndex::~TxIndex() {}
bool TxIndex::Init()
{
LOCK(cs_main);
// Attempt to migrate txindex from the old database to the new one. Even if
// chain_tip is null, the node could be reindexing and we still want to
// delete txindex records in the old database.
if (!m_db->MigrateData(*m_chainstate->m_blockman.m_block_tree_db, m_chainstate->m_chain.GetLocator())) {
return false;
}
return BaseIndex::Init();
}
bool TxIndex::WriteBlock(const CBlock& block, const CBlockIndex* pindex)
{
// Exclude genesis block transaction because outputs are not spendable.
if (pindex->nHeight == 0) return true;
CDiskTxPos pos(pindex->GetBlockPos(), GetSizeOfCompactSize(block.vtx.size()));
std::vector<std::pair<uint256, CDiskTxPos>> vPos;
vPos.reserve(block.vtx.size());
for (const auto& tx : block.vtx) {
vPos.emplace_back(tx->GetHash(), pos);
pos.nTxOffset += ::GetSerializeSize(*tx, CLIENT_VERSION);
}
return m_db->WriteTxs(vPos);
}
BaseIndex::DB& TxIndex::GetDB() const { return *m_db; }
bool TxIndex::FindTx(const uint256& tx_hash, uint256& block_hash, CTransactionRef& tx) const
{
CDiskTxPos postx;
if (!m_db->ReadTxPos(tx_hash, postx)) {
return false;
}
CAutoFile file(OpenBlockFile(postx, true), SER_DISK, CLIENT_VERSION);
if (file.IsNull()) {
return error("%s: OpenBlockFile failed", __func__);
}
CBlockHeader header;
try {
file >> header;
if (fseek(file.Get(), postx.nTxOffset, SEEK_CUR)) {
return error("%s: fseek(...) failed", __func__);
}
file >> tx;
} catch (const std::exception& e) {
return error("%s: Deserialize or I/O error - %s", __func__, e.what());
}
if (tx->GetHash() != tx_hash) {
return error("%s: txid mismatch", __func__);
}
block_hash = header.GetHash();
return true;
}
|