1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
|
// Copyright (c) 2009-2010 Satoshi Nakamoto
// Copyright (c) 2009-2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.
#ifndef BITCOIN_HASH_H
#define BITCOIN_HASH_H
#include <crypto/common.h>
#include <crypto/ripemd160.h>
#include <crypto/sha256.h>
#include <prevector.h>
#include <serialize.h>
#include <uint256.h>
#include <version.h>
#include <string>
#include <vector>
typedef uint256 ChainCode;
/** A hasher class for Bitcoin's 256-bit hash (double SHA-256). */
class CHash256 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CSHA256::OUTPUT_SIZE;
void Finalize(Span<unsigned char> output) {
assert(output.size() == OUTPUT_SIZE);
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
sha.Reset().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(output.data());
}
CHash256& Write(Span<const unsigned char> input) {
sha.Write(input.data(), input.size());
return *this;
}
CHash256& Reset() {
sha.Reset();
return *this;
}
};
/** A hasher class for Bitcoin's 160-bit hash (SHA-256 + RIPEMD-160). */
class CHash160 {
private:
CSHA256 sha;
public:
static const size_t OUTPUT_SIZE = CRIPEMD160::OUTPUT_SIZE;
void Finalize(Span<unsigned char> output) {
assert(output.size() == OUTPUT_SIZE);
unsigned char buf[CSHA256::OUTPUT_SIZE];
sha.Finalize(buf);
CRIPEMD160().Write(buf, CSHA256::OUTPUT_SIZE).Finalize(output.data());
}
CHash160& Write(Span<const unsigned char> input) {
sha.Write(input.data(), input.size());
return *this;
}
CHash160& Reset() {
sha.Reset();
return *this;
}
};
/** Compute the 256-bit hash of an object. */
template<typename T>
inline uint256 Hash(const T& in1)
{
uint256 result;
CHash256().Write(MakeUCharSpan(in1)).Finalize(result);
return result;
}
/** Compute the 256-bit hash of the concatenation of two objects. */
template<typename T1, typename T2>
inline uint256 Hash(const T1& in1, const T2& in2) {
uint256 result;
CHash256().Write(MakeUCharSpan(in1)).Write(MakeUCharSpan(in2)).Finalize(result);
return result;
}
/** Compute the 160-bit hash an object. */
template<typename T1>
inline uint160 Hash160(const T1& in1)
{
uint160 result;
CHash160().Write(MakeUCharSpan(in1)).Finalize(result);
return result;
}
/** A writer stream (for serialization) that computes a 256-bit hash. */
class HashWriter
{
private:
CSHA256 ctx;
public:
void write(Span<const std::byte> src)
{
ctx.Write(UCharCast(src.data()), src.size());
}
/** Compute the double-SHA256 hash of all data written to this object.
*
* Invalidates this object.
*/
uint256 GetHash() {
uint256 result;
ctx.Finalize(result.begin());
ctx.Reset().Write(result.begin(), CSHA256::OUTPUT_SIZE).Finalize(result.begin());
return result;
}
/** Compute the SHA256 hash of all data written to this object.
*
* Invalidates this object.
*/
uint256 GetSHA256() {
uint256 result;
ctx.Finalize(result.begin());
return result;
}
/**
* Returns the first 64 bits from the resulting hash.
*/
inline uint64_t GetCheapHash() {
uint256 result = GetHash();
return ReadLE64(result.begin());
}
template <typename T>
HashWriter& operator<<(const T& obj)
{
::Serialize(*this, obj);
return *this;
}
};
class CHashWriter : public HashWriter
{
private:
const int nType;
const int nVersion;
public:
CHashWriter(int nTypeIn, int nVersionIn) : nType(nTypeIn), nVersion(nVersionIn) {}
int GetType() const { return nType; }
int GetVersion() const { return nVersion; }
template<typename T>
CHashWriter& operator<<(const T& obj) {
// Serialize to this stream
::Serialize(*this, obj);
return (*this);
}
};
/** Reads data from an underlying stream, while hashing the read data. */
template<typename Source>
class CHashVerifier : public CHashWriter
{
private:
Source* source;
public:
explicit CHashVerifier(Source* source_) : CHashWriter(source_->GetType(), source_->GetVersion()), source(source_) {}
void read(Span<std::byte> dst)
{
source->read(dst);
this->write(dst);
}
void ignore(size_t nSize)
{
std::byte data[1024];
while (nSize > 0) {
size_t now = std::min<size_t>(nSize, 1024);
read({data, now});
nSize -= now;
}
}
template<typename T>
CHashVerifier<Source>& operator>>(T&& obj)
{
// Unserialize from this stream
::Unserialize(*this, obj);
return (*this);
}
};
/** Compute the 256-bit hash of an object's serialization. */
template<typename T>
uint256 SerializeHash(const T& obj, int nType=SER_GETHASH, int nVersion=PROTOCOL_VERSION)
{
CHashWriter ss(nType, nVersion);
ss << obj;
return ss.GetHash();
}
/** Single-SHA256 a 32-byte input (represented as uint256). */
[[nodiscard]] uint256 SHA256Uint256(const uint256& input);
unsigned int MurmurHash3(unsigned int nHashSeed, Span<const unsigned char> vDataToHash);
void BIP32Hash(const ChainCode &chainCode, unsigned int nChild, unsigned char header, const unsigned char data[32], unsigned char output[64]);
/** Return a HashWriter primed for tagged hashes (as specified in BIP 340).
*
* The returned object will have SHA256(tag) written to it twice (= 64 bytes).
* A tagged hash can be computed by feeding the message into this object, and
* then calling HashWriter::GetSHA256().
*/
HashWriter TaggedHash(const std::string& tag);
#endif // BITCOIN_HASH_H
|