aboutsummaryrefslogtreecommitdiff
path: root/src/field_impl.h
blob: 374284a1f4ce974cd551fd4e66b9d274381dc043 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
/***********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                              *
 * Distributed under the MIT software license, see the accompanying    *
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
 ***********************************************************************/

#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include "util.h"

#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif

SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe na;
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero(&na);
}

SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe na;
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero_var(&na);
}

static int secp256k1_fe_sqrt(secp256k1_fe *r, const secp256k1_fe *a) {
    /** Given that p is congruent to 3 mod 4, we can compute the square root of
     *  a mod p as the (p+1)/4'th power of a.
     *
     *  As (p+1)/4 is an even number, it will have the same result for a and for
     *  (-a). Only one of these two numbers actually has a square root however,
     *  so we test at the end by squaring and comparing to the input.
     *  Also because (p+1)/4 is an even number, the computed square root is
     *  itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
     */
    secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j;

    VERIFY_CHECK(r != a);

    /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
     *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x6, &x6);
    }
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x9, &x9);
    }
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) {
        secp256k1_fe_sqr(&x11, &x11);
    }
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) {
        secp256k1_fe_sqr(&x22, &x22);
    }
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) {
        secp256k1_fe_sqr(&x44, &x44);
    }
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x88, &x88);
    }
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) {
        secp256k1_fe_sqr(&x176, &x176);
    }
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x220, &x220);
    }
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x223, &x223);
    }
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<6; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x2);
    secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_sqr(r, &t1);

    /* Check that a square root was actually calculated */

    secp256k1_fe_sqr(&t1, r);
    return secp256k1_fe_equal(&t1, a);
}

static const secp256k1_fe secp256k1_fe_one = SECP256K1_FE_CONST(0, 0, 0, 0, 0, 0, 0, 1);

#endif /* SECP256K1_FIELD_IMPL_H */