aboutsummaryrefslogtreecommitdiff
path: root/src/field_impl.h
blob: 77f4aae2f97248eb5df77d33a1f9c18f8fa268b1 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include "util.h"

#if defined(USE_FIELD_10X26)
#include "field_10x26_impl.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52_impl.h"
#else
#error "Please select field implementation"
#endif

SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe na;
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero_var(&na);
}

static int secp256k1_fe_sqrt_var(secp256k1_fe *r, const secp256k1_fe *a) {
    /** Given that p is congruent to 3 mod 4, we can compute the square root of
     *  a mod p as the (p+1)/4'th power of a.
     *
     *  As (p+1)/4 is an even number, it will have the same result for a and for
     *  (-a). Only one of these two numbers actually has a square root however,
     *  so we test at the end by squaring and comparing to the input.
     *  Also because (p+1)/4 is an even number, the computed square root is
     *  itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
     */
    secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j;

    /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
     *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x6, &x6);
    }
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x9, &x9);
    }
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) {
        secp256k1_fe_sqr(&x11, &x11);
    }
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) {
        secp256k1_fe_sqr(&x22, &x22);
    }
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) {
        secp256k1_fe_sqr(&x44, &x44);
    }
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x88, &x88);
    }
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) {
        secp256k1_fe_sqr(&x176, &x176);
    }
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x220, &x220);
    }
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x223, &x223);
    }
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<6; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x2);
    secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_sqr(r, &t1);

    /* Check that a square root was actually calculated */

    secp256k1_fe_sqr(&t1, r);
    return secp256k1_fe_equal_var(&t1, a);
}

static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *a) {
    secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j;

    /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
     *  { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x6, &x6);
    }
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x9, &x9);
    }
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) {
        secp256k1_fe_sqr(&x11, &x11);
    }
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) {
        secp256k1_fe_sqr(&x22, &x22);
    }
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) {
        secp256k1_fe_sqr(&x44, &x44);
    }
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x88, &x88);
    }
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) {
        secp256k1_fe_sqr(&x176, &x176);
    }
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x220, &x220);
    }
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x223, &x223);
    }
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<5; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, a);
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x2);
    for (j=0; j<2; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(r, a, &t1);
}

static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *a) {
#if defined(USE_FIELD_INV_BUILTIN)
    secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
    secp256k1_num n, m;
    static const secp256k1_fe negone = SECP256K1_FE_CONST(
        0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFFUL,
        0xFFFFFFFFUL, 0xFFFFFFFFUL, 0xFFFFFFFEUL, 0xFFFFFC2EUL
    );
    /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
    static const unsigned char prime[32] = {
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
    };
    unsigned char b[32];
    int res;
    secp256k1_fe c = *a;
    secp256k1_fe_normalize_var(&c);
    secp256k1_fe_get_b32(b, &c);
    secp256k1_num_set_bin(&n, b, 32);
    secp256k1_num_set_bin(&m, prime, 32);
    secp256k1_num_mod_inverse(&n, &n, &m);
    secp256k1_num_get_bin(b, 32, &n);
    res = secp256k1_fe_set_b32(r, b);
    (void)res;
    VERIFY_CHECK(res);
    /* Verify the result is the (unique) valid inverse using non-GMP code. */
    secp256k1_fe_mul(&c, &c, r);
    secp256k1_fe_add(&c, &negone);
    CHECK(secp256k1_fe_normalizes_to_zero_var(&c));
#else
#error "Please select field inverse implementation"
#endif
}

static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe *r, const secp256k1_fe *a) {
    secp256k1_fe u;
    size_t i;
    if (len < 1) {
        return;
    }

    VERIFY_CHECK((r + len <= a) || (a + len <= r));

    r[0] = a[0];

    i = 0;
    while (++i < len) {
        secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
    }

    secp256k1_fe_inv_var(&u, &r[--i]);

    while (i > 0) {
        size_t j = i--;
        secp256k1_fe_mul(&r[j], &r[i], &u);
        secp256k1_fe_mul(&u, &u, &a[j]);
    }

    r[0] = u;
}

#endif