aboutsummaryrefslogtreecommitdiff
path: root/src/field_impl.h
blob: 047914cf28e9facef6033ac801582bca03e72240 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_FIELD_IMPL_H_
#define _SECP256K1_FIELD_IMPL_H_

#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif

#include "util.h"

#if defined(USE_FIELD_10X26)
#include "field_10x26_impl.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52_impl.h"
#else
#error "Please select field implementation"
#endif

SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b) {
    secp256k1_fe_t na;
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero_var(&na);
}

static int secp256k1_fe_sqrt_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
    secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j;

    /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
     *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x6, &x6);
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x9, &x9);
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) secp256k1_fe_sqr(&x11, &x11);
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) secp256k1_fe_sqr(&x22, &x22);
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) secp256k1_fe_sqr(&x44, &x44);
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) secp256k1_fe_sqr(&x88, &x88);
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) secp256k1_fe_sqr(&x176, &x176);
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) secp256k1_fe_sqr(&x220, &x220);
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<6; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(&t1, &t1, &x2);
    secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_sqr(r, &t1);

    /* Check that a square root was actually calculated */

    secp256k1_fe_sqr(&t1, r);
    return secp256k1_fe_equal_var(&t1, a);
}

static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
    secp256k1_fe_t x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j;

    /** The binary representation of (p - 2) has 5 blocks of 1s, with lengths in
     *  { 1, 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  [1], [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x6, &x6);
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x9, &x9);
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) secp256k1_fe_sqr(&x11, &x11);
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) secp256k1_fe_sqr(&x22, &x22);
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) secp256k1_fe_sqr(&x44, &x44);
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) secp256k1_fe_sqr(&x88, &x88);
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) secp256k1_fe_sqr(&x176, &x176);
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) secp256k1_fe_sqr(&x220, &x220);
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) secp256k1_fe_sqr(&x223, &x223);
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<5; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(&t1, &t1, a);
    for (j=0; j<3; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(&t1, &t1, &x2);
    for (j=0; j<2; j++) secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_mul(r, a, &t1);
}

static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a) {
#if defined(USE_FIELD_INV_BUILTIN)
    secp256k1_fe_inv(r, a);
#elif defined(USE_FIELD_INV_NUM)
    secp256k1_num_t n, m;
    /* secp256k1 field prime, value p defined in "Standards for Efficient Cryptography" (SEC2) 2.7.1. */
    static const unsigned char prime[32] = {
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
        0xFF,0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F
    };
    unsigned char b[32];
    secp256k1_fe_t c = *a;
    secp256k1_fe_normalize_var(&c);
    secp256k1_fe_get_b32(b, &c);
    secp256k1_num_set_bin(&n, b, 32);
    secp256k1_num_set_bin(&m, prime, 32);
    secp256k1_num_mod_inverse(&n, &n, &m);
    secp256k1_num_get_bin(b, 32, &n);
    VERIFY_CHECK(secp256k1_fe_set_b32(r, b));
#else
#error "Please select field inverse implementation"
#endif
}

static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t *r, const secp256k1_fe_t *a) {
    secp256k1_fe_t u;
    size_t i;
    if (len < 1)
        return;

    VERIFY_CHECK((r + len <= a) || (a + len <= r));

    r[0] = a[0];

    i = 0;
    while (++i < len) {
        secp256k1_fe_mul(&r[i], &r[i - 1], &a[i]);
    }

    secp256k1_fe_inv_var(&u, &r[--i]);

    while (i > 0) {
        int j = i--;
        secp256k1_fe_mul(&r[j], &r[i], &u);
        secp256k1_fe_mul(&u, &u, &a[j]);
    }

    r[0] = u;
}

#endif