aboutsummaryrefslogtreecommitdiff
path: root/src/field_impl.h
blob: 7f18ebdc94e07bc6dee10a9227b1fb1b38e5d4b4 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
/***********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                              *
 * Distributed under the MIT software license, see the accompanying    *
 * file COPYING or https://www.opensource.org/licenses/mit-license.php.*
 ***********************************************************************/

#ifndef SECP256K1_FIELD_IMPL_H
#define SECP256K1_FIELD_IMPL_H

#include "field.h"
#include "util.h"

#if defined(SECP256K1_WIDEMUL_INT128)
#include "field_5x52_impl.h"
#elif defined(SECP256K1_WIDEMUL_INT64)
#include "field_10x26_impl.h"
#else
#error "Please select wide multiplication implementation"
#endif

SECP256K1_INLINE static int secp256k1_fe_equal(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe na;
#ifdef VERIFY
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
    VERIFY_CHECK(a->magnitude <= 1);
    VERIFY_CHECK(b->magnitude <= 31);
#endif
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero(&na);
}

SECP256K1_INLINE static int secp256k1_fe_equal_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe na;
#ifdef VERIFY
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
    VERIFY_CHECK(a->magnitude <= 1);
    VERIFY_CHECK(b->magnitude <= 31);
#endif
    secp256k1_fe_negate(&na, a, 1);
    secp256k1_fe_add(&na, b);
    return secp256k1_fe_normalizes_to_zero_var(&na);
}

static int secp256k1_fe_sqrt(secp256k1_fe * SECP256K1_RESTRICT r, const secp256k1_fe * SECP256K1_RESTRICT a) {
    /** Given that p is congruent to 3 mod 4, we can compute the square root of
     *  a mod p as the (p+1)/4'th power of a.
     *
     *  As (p+1)/4 is an even number, it will have the same result for a and for
     *  (-a). Only one of these two numbers actually has a square root however,
     *  so we test at the end by squaring and comparing to the input.
     *  Also because (p+1)/4 is an even number, the computed square root is
     *  itself always a square (a ** ((p+1)/4) is the square of a ** ((p+1)/8)).
     */
    secp256k1_fe x2, x3, x6, x9, x11, x22, x44, x88, x176, x220, x223, t1;
    int j, ret;

#ifdef VERIFY
    VERIFY_CHECK(r != a);
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->magnitude <= 8);
#endif

    /** The binary representation of (p + 1)/4 has 3 blocks of 1s, with lengths in
     *  { 2, 22, 223 }. Use an addition chain to calculate 2^n - 1 for each block:
     *  1, [2], 3, 6, 9, 11, [22], 44, 88, 176, 220, [223]
     */

    secp256k1_fe_sqr(&x2, a);
    secp256k1_fe_mul(&x2, &x2, a);

    secp256k1_fe_sqr(&x3, &x2);
    secp256k1_fe_mul(&x3, &x3, a);

    x6 = x3;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x6, &x6);
    }
    secp256k1_fe_mul(&x6, &x6, &x3);

    x9 = x6;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x9, &x9);
    }
    secp256k1_fe_mul(&x9, &x9, &x3);

    x11 = x9;
    for (j=0; j<2; j++) {
        secp256k1_fe_sqr(&x11, &x11);
    }
    secp256k1_fe_mul(&x11, &x11, &x2);

    x22 = x11;
    for (j=0; j<11; j++) {
        secp256k1_fe_sqr(&x22, &x22);
    }
    secp256k1_fe_mul(&x22, &x22, &x11);

    x44 = x22;
    for (j=0; j<22; j++) {
        secp256k1_fe_sqr(&x44, &x44);
    }
    secp256k1_fe_mul(&x44, &x44, &x22);

    x88 = x44;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x88, &x88);
    }
    secp256k1_fe_mul(&x88, &x88, &x44);

    x176 = x88;
    for (j=0; j<88; j++) {
        secp256k1_fe_sqr(&x176, &x176);
    }
    secp256k1_fe_mul(&x176, &x176, &x88);

    x220 = x176;
    for (j=0; j<44; j++) {
        secp256k1_fe_sqr(&x220, &x220);
    }
    secp256k1_fe_mul(&x220, &x220, &x44);

    x223 = x220;
    for (j=0; j<3; j++) {
        secp256k1_fe_sqr(&x223, &x223);
    }
    secp256k1_fe_mul(&x223, &x223, &x3);

    /* The final result is then assembled using a sliding window over the blocks. */

    t1 = x223;
    for (j=0; j<23; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x22);
    for (j=0; j<6; j++) {
        secp256k1_fe_sqr(&t1, &t1);
    }
    secp256k1_fe_mul(&t1, &t1, &x2);
    secp256k1_fe_sqr(&t1, &t1);
    secp256k1_fe_sqr(r, &t1);

    /* Check that a square root was actually calculated */

    secp256k1_fe_sqr(&t1, r);
    ret = secp256k1_fe_equal(&t1, a);

#ifdef VERIFY
    if (!ret) {
        secp256k1_fe_negate(&t1, &t1, 1);
        secp256k1_fe_normalize_var(&t1);
        VERIFY_CHECK(secp256k1_fe_equal_var(&t1, a));
    }
#endif
    return ret;
}

#ifndef VERIFY
static void secp256k1_fe_verify(const secp256k1_fe *a) { (void)a; }
#else
static void secp256k1_fe_impl_verify(const secp256k1_fe *a);
static void secp256k1_fe_verify(const secp256k1_fe *a) {
    /* Magnitude between 0 and 32. */
    VERIFY_CHECK((a->magnitude >= 0) && (a->magnitude <= 32));
    /* Normalized is 0 or 1. */
    VERIFY_CHECK((a->normalized == 0) || (a->normalized == 1));
    /* If normalized, magnitude must be 0 or 1. */
    if (a->normalized) VERIFY_CHECK(a->magnitude <= 1);
    /* Invoke implementation-specific checks. */
    secp256k1_fe_impl_verify(a);
}

static void secp256k1_fe_impl_normalize(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize(secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    secp256k1_fe_impl_normalize(r);
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_normalize_weak(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_weak(secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    secp256k1_fe_impl_normalize_weak(r);
    r->magnitude = 1;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_normalize_var(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_normalize_var(secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    secp256k1_fe_impl_normalize_var(r);
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
}

static int secp256k1_fe_impl_normalizes_to_zero(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero(const secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    return secp256k1_fe_impl_normalizes_to_zero(r);
}

static int secp256k1_fe_impl_normalizes_to_zero_var(const secp256k1_fe *r);
SECP256K1_INLINE static int secp256k1_fe_normalizes_to_zero_var(const secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    return secp256k1_fe_impl_normalizes_to_zero_var(r);
}

static void secp256k1_fe_impl_set_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_set_int(secp256k1_fe *r, int a) {
    VERIFY_CHECK(0 <= a && a <= 0x7FFF);
    secp256k1_fe_impl_set_int(r, a);
    r->magnitude = (a != 0);
    r->normalized = 1;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_add_int(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_add_int(secp256k1_fe *r, int a) {
    VERIFY_CHECK(0 <= a && a <= 0x7FFF);
    secp256k1_fe_verify(r);
    secp256k1_fe_impl_add_int(r, a);
    r->magnitude += 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_clear(secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_clear(secp256k1_fe *a) {
    a->magnitude = 0;
    a->normalized = 1;
    secp256k1_fe_impl_clear(a);
    secp256k1_fe_verify(a);
}

static int secp256k1_fe_impl_is_zero(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_zero(const secp256k1_fe *a) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->normalized);
    return secp256k1_fe_impl_is_zero(a);
}

static int secp256k1_fe_impl_is_odd(const secp256k1_fe *a);
SECP256K1_INLINE static int secp256k1_fe_is_odd(const secp256k1_fe *a) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->normalized);
    return secp256k1_fe_impl_is_odd(a);
}

static int secp256k1_fe_impl_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b);
SECP256K1_INLINE static int secp256k1_fe_cmp_var(const secp256k1_fe *a, const secp256k1_fe *b) {
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
    VERIFY_CHECK(a->normalized);
    VERIFY_CHECK(b->normalized);
    return secp256k1_fe_impl_cmp_var(a, b);
}

static void secp256k1_fe_impl_set_b32_mod(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static void secp256k1_fe_set_b32_mod(secp256k1_fe *r, const unsigned char *a) {
    secp256k1_fe_impl_set_b32_mod(r, a);
    r->magnitude = 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static int secp256k1_fe_impl_set_b32_limit(secp256k1_fe *r, const unsigned char *a);
SECP256K1_INLINE static int secp256k1_fe_set_b32_limit(secp256k1_fe *r, const unsigned char *a) {
    if (secp256k1_fe_impl_set_b32_limit(r, a)) {
        r->magnitude = 1;
        r->normalized = 1;
        secp256k1_fe_verify(r);
        return 1;
    } else {
        /* Mark the output field element as invalid. */
        r->magnitude = -1;
        return 0;
    }
}

static void secp256k1_fe_impl_get_b32(unsigned char *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe *a) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->normalized);
    secp256k1_fe_impl_get_b32(r, a);
}

static void secp256k1_fe_impl_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m);
SECP256K1_INLINE static void secp256k1_fe_negate_unchecked(secp256k1_fe *r, const secp256k1_fe *a, int m) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(m >= 0 && m <= 31);
    VERIFY_CHECK(a->magnitude <= m);
    secp256k1_fe_impl_negate_unchecked(r, a, m);
    r->magnitude = m + 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_mul_int_unchecked(secp256k1_fe *r, int a);
SECP256K1_INLINE static void secp256k1_fe_mul_int_unchecked(secp256k1_fe *r, int a) {
    secp256k1_fe_verify(r);
    VERIFY_CHECK(a >= 0 && a <= 32);
    VERIFY_CHECK(a*r->magnitude <= 32);
    secp256k1_fe_impl_mul_int_unchecked(r, a);
    r->magnitude *= a;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_add(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_add(secp256k1_fe *r, const secp256k1_fe *a) {
    secp256k1_fe_verify(r);
    secp256k1_fe_verify(a);
    VERIFY_CHECK(r->magnitude + a->magnitude <= 32);
    secp256k1_fe_impl_add(r, a);
    r->magnitude += a->magnitude;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b);
SECP256K1_INLINE static void secp256k1_fe_mul(secp256k1_fe *r, const secp256k1_fe *a, const secp256k1_fe * SECP256K1_RESTRICT b) {
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(b);
    VERIFY_CHECK(a->magnitude <= 8);
    VERIFY_CHECK(b->magnitude <= 8);
    VERIFY_CHECK(r != b);
    VERIFY_CHECK(a != b);
    secp256k1_fe_impl_mul(r, a, b);
    r->magnitude = 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_sqr(secp256k1_fe *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_sqr(secp256k1_fe *r, const secp256k1_fe *a) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->magnitude <= 8);
    secp256k1_fe_impl_sqr(r, a);
    r->magnitude = 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag);
SECP256K1_INLINE static void secp256k1_fe_cmov(secp256k1_fe *r, const secp256k1_fe *a, int flag) {
    VERIFY_CHECK(flag == 0 || flag == 1);
    secp256k1_fe_verify(a);
    secp256k1_fe_verify(r);
    secp256k1_fe_impl_cmov(r, a, flag);
    if (a->magnitude > r->magnitude) r->magnitude = a->magnitude;
    if (!a->normalized) r->normalized = 0;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a);
SECP256K1_INLINE static void secp256k1_fe_to_storage(secp256k1_fe_storage *r, const secp256k1_fe *a) {
    secp256k1_fe_verify(a);
    VERIFY_CHECK(a->normalized);
    secp256k1_fe_impl_to_storage(r, a);
}

static void secp256k1_fe_impl_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a);
SECP256K1_INLINE static void secp256k1_fe_from_storage(secp256k1_fe *r, const secp256k1_fe_storage *a) {
    secp256k1_fe_impl_from_storage(r, a);
    r->magnitude = 1;
    r->normalized = 1;
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_inv(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv(secp256k1_fe *r, const secp256k1_fe *x) {
    int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
    secp256k1_fe_verify(x);
    secp256k1_fe_impl_inv(r, x);
    r->magnitude = x->magnitude > 0;
    r->normalized = 1;
    VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_inv_var(secp256k1_fe *r, const secp256k1_fe *x);
SECP256K1_INLINE static void secp256k1_fe_inv_var(secp256k1_fe *r, const secp256k1_fe *x) {
    int input_is_zero = secp256k1_fe_normalizes_to_zero(x);
    secp256k1_fe_verify(x);
    secp256k1_fe_impl_inv_var(r, x);
    r->magnitude = x->magnitude > 0;
    r->normalized = 1;
    VERIFY_CHECK(secp256k1_fe_normalizes_to_zero(r) == input_is_zero);
    secp256k1_fe_verify(r);
}

static int secp256k1_fe_impl_is_square_var(const secp256k1_fe *x);
SECP256K1_INLINE static int secp256k1_fe_is_square_var(const secp256k1_fe *x) {
    int ret;
    secp256k1_fe tmp = *x, sqrt;
    secp256k1_fe_verify(x);
    ret = secp256k1_fe_impl_is_square_var(x);
    secp256k1_fe_normalize_weak(&tmp);
    VERIFY_CHECK(ret == secp256k1_fe_sqrt(&sqrt, &tmp));
    return ret;
}

static void secp256k1_fe_impl_get_bounds(secp256k1_fe* r, int m);
SECP256K1_INLINE static void secp256k1_fe_get_bounds(secp256k1_fe* r, int m) {
    VERIFY_CHECK(m >= 0);
    VERIFY_CHECK(m <= 32);
    secp256k1_fe_impl_get_bounds(r, m);
    r->magnitude = m;
    r->normalized = (m == 0);
    secp256k1_fe_verify(r);
}

static void secp256k1_fe_impl_half(secp256k1_fe *r);
SECP256K1_INLINE static void secp256k1_fe_half(secp256k1_fe *r) {
    secp256k1_fe_verify(r);
    VERIFY_CHECK(r->magnitude < 32);
    secp256k1_fe_impl_half(r);
    r->magnitude = (r->magnitude >> 1) + 1;
    r->normalized = 0;
    secp256k1_fe_verify(r);
}

#endif /* defined(VERIFY) */

#endif /* SECP256K1_FIELD_IMPL_H */