1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
|
/**********************************************************************
* Copyright (c) 2013, 2014 Pieter Wuille *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or http://www.opensource.org/licenses/mit-license.php.*
**********************************************************************/
#ifndef _SECP256K1_FIELD_
#define _SECP256K1_FIELD_
/** Field element module.
*
* Field elements can be represented in several ways, but code accessing
* it (and implementations) need to take certain properaties into account:
* - Each field element can be normalized or not.
* - Each field element has a magnitude, which represents how far away
* its representation is away from normalization. Normalized elements
* always have a magnitude of 1, but a magnitude of 1 doesn't imply
* normality.
*/
#if defined HAVE_CONFIG_H
#include "libsecp256k1-config.h"
#endif
#if defined(USE_FIELD_GMP)
#include "field_gmp.h"
#elif defined(USE_FIELD_10X26)
#include "field_10x26.h"
#elif defined(USE_FIELD_5X52)
#include "field_5x52.h"
#else
#error "Please select field implementation"
#endif
typedef struct {
#ifndef USE_NUM_NONE
secp256k1_num_t p;
#endif
secp256k1_fe_t order;
} secp256k1_fe_consts_t;
static const secp256k1_fe_consts_t *secp256k1_fe_consts = NULL;
/** Initialize field element precomputation data. */
static void secp256k1_fe_start(void);
/** Unload field element precomputation data. */
static void secp256k1_fe_stop(void);
/** Normalize a field element. */
static void secp256k1_fe_normalize(secp256k1_fe_t *r);
/** Set a field element equal to a small integer. Resulting field element is normalized. */
static void secp256k1_fe_set_int(secp256k1_fe_t *r, int a);
/** Verify whether a field element is zero. Requires the input to be normalized. */
static int secp256k1_fe_is_zero(const secp256k1_fe_t *a);
/** Check the "oddness" of a field element. Requires the input to be normalized. */
static int secp256k1_fe_is_odd(const secp256k1_fe_t *a);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_equal(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
/** Compare two field elements. Requires both inputs to be normalized */
static int secp256k1_fe_cmp_var(const secp256k1_fe_t *a, const secp256k1_fe_t *b);
/** Set a field element equal to 32-byte big endian value. If succesful, the resulting field element is normalized. */
static int secp256k1_fe_set_b32(secp256k1_fe_t *r, const unsigned char *a);
/** Convert a field element to a 32-byte big endian value. Requires the input to be normalized */
static void secp256k1_fe_get_b32(unsigned char *r, const secp256k1_fe_t *a);
/** Set a field element equal to the additive inverse of another. Takes a maximum magnitude of the input
* as an argument. The magnitude of the output is one higher. */
static void secp256k1_fe_negate(secp256k1_fe_t *r, const secp256k1_fe_t *a, int m);
/** Multiplies the passed field element with a small integer constant. Multiplies the magnitude by that
* small integer. */
static void secp256k1_fe_mul_int(secp256k1_fe_t *r, int a);
/** Adds a field element to another. The result has the sum of the inputs' magnitudes as magnitude. */
static void secp256k1_fe_add(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the product of two others. Requires the inputs' magnitudes to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_mul(secp256k1_fe_t *r, const secp256k1_fe_t *a, const secp256k1_fe_t * SECP256K1_RESTRICT b);
/** Sets a field element to be the square of another. Requires the input's magnitude to be at most 8.
* The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_sqr(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) square root (if any exist) of another. Requires the
* input's magnitude to be at most 8. The output magnitude is 1 (but not guaranteed to be
* normalized). Return value indicates whether a square root was found. */
static int secp256k1_fe_sqrt(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Sets a field element to be the (modular) inverse of another. Requires the input's magnitude to be
* at most 8. The output magnitude is 1 (but not guaranteed to be normalized). */
static void secp256k1_fe_inv(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Potentially faster version of secp256k1_fe_inv, without constant-time guarantee. */
static void secp256k1_fe_inv_var(secp256k1_fe_t *r, const secp256k1_fe_t *a);
/** Calculate the (modular) inverses of a batch of field elements. Requires the inputs' magnitudes to be
* at most 8. The output magnitudes are 1 (but not guaranteed to be normalized). The inputs and
* outputs must not overlap in memory. */
static void secp256k1_fe_inv_all(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]);
/** Potentially faster version of secp256k1_fe_inv_all, without constant-time guarantee. */
static void secp256k1_fe_inv_all_var(size_t len, secp256k1_fe_t r[len], const secp256k1_fe_t a[len]);
/** Convert a field element to a hexadecimal string. */
static void secp256k1_fe_get_hex(char *r, int *rlen, const secp256k1_fe_t *a);
/** Convert a hexadecimal string to a field element. */
static int secp256k1_fe_set_hex(secp256k1_fe_t *r, const char *a, int alen);
/** If flag is true, set *r equal to *a; otherwise leave it. Constant-time. */
static void secp256k1_fe_cmov(secp256k1_fe_t *r, const secp256k1_fe_t *a, int flag);
#endif
|