aboutsummaryrefslogtreecommitdiff
path: root/src/ecwrapper.cpp
blob: f94bc954fd124c3a3428759b8b61ad9b14d77d9e (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// Copyright (c) 2009-2014 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include "ecwrapper.h"

#include "serialize.h"
#include "uint256.h"

#include <openssl/bn.h>
#include <openssl/ecdsa.h>
#include <openssl/obj_mac.h>

namespace {

class ecgroup_order
{
public:
  static const EC_GROUP* get()
  {
      static const ecgroup_order wrapper;
      return wrapper.pgroup;
  }

private:
  ecgroup_order()
  : pgroup(EC_GROUP_new_by_curve_name(NID_secp256k1))
  {
  }

  ~ecgroup_order()
  {
    EC_GROUP_free(pgroup);
  }

  EC_GROUP* pgroup;
};

/**
 * Perform ECDSA key recovery (see SEC1 4.1.6) for curves over (mod p)-fields
 * recid selects which key is recovered
 * if check is non-zero, additional checks are performed
 */
int ECDSA_SIG_recover_key_GFp(EC_KEY *eckey, ECDSA_SIG *ecsig, const unsigned char *msg, int msglen, int recid, int check)
{
    if (!eckey) return 0;

    int ret = 0;
    BN_CTX *ctx = NULL;

    BIGNUM *x = NULL;
    BIGNUM *e = NULL;
    BIGNUM *order = NULL;
    BIGNUM *sor = NULL;
    BIGNUM *eor = NULL;
    BIGNUM *field = NULL;
    EC_POINT *R = NULL;
    EC_POINT *O = NULL;
    EC_POINT *Q = NULL;
    BIGNUM *rr = NULL;
    BIGNUM *zero = NULL;
    int n = 0;
    int i = recid / 2;

    const EC_GROUP *group = EC_KEY_get0_group(eckey);
    if ((ctx = BN_CTX_new()) == NULL) { ret = -1; goto err; }
    BN_CTX_start(ctx);
    order = BN_CTX_get(ctx);
    if (!EC_GROUP_get_order(group, order, ctx)) { ret = -2; goto err; }
    x = BN_CTX_get(ctx);
    if (!BN_copy(x, order)) { ret=-1; goto err; }
    if (!BN_mul_word(x, i)) { ret=-1; goto err; }
    if (!BN_add(x, x, ecsig->r)) { ret=-1; goto err; }
    field = BN_CTX_get(ctx);
    if (!EC_GROUP_get_curve_GFp(group, field, NULL, NULL, ctx)) { ret=-2; goto err; }
    if (BN_cmp(x, field) >= 0) { ret=0; goto err; }
    if ((R = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
    if (!EC_POINT_set_compressed_coordinates_GFp(group, R, x, recid % 2, ctx)) { ret=0; goto err; }
    if (check)
    {
        if ((O = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
        if (!EC_POINT_mul(group, O, NULL, R, order, ctx)) { ret=-2; goto err; }
        if (!EC_POINT_is_at_infinity(group, O)) { ret = 0; goto err; }
    }
    if ((Q = EC_POINT_new(group)) == NULL) { ret = -2; goto err; }
    n = EC_GROUP_get_degree(group);
    e = BN_CTX_get(ctx);
    if (!BN_bin2bn(msg, msglen, e)) { ret=-1; goto err; }
    if (8*msglen > n) BN_rshift(e, e, 8-(n & 7));
    zero = BN_CTX_get(ctx);
    if (!BN_zero(zero)) { ret=-1; goto err; }
    if (!BN_mod_sub(e, zero, e, order, ctx)) { ret=-1; goto err; }
    rr = BN_CTX_get(ctx);
    if (!BN_mod_inverse(rr, ecsig->r, order, ctx)) { ret=-1; goto err; }
    sor = BN_CTX_get(ctx);
    if (!BN_mod_mul(sor, ecsig->s, rr, order, ctx)) { ret=-1; goto err; }
    eor = BN_CTX_get(ctx);
    if (!BN_mod_mul(eor, e, rr, order, ctx)) { ret=-1; goto err; }
    if (!EC_POINT_mul(group, Q, eor, R, sor, ctx)) { ret=-2; goto err; }
    if (!EC_KEY_set_public_key(eckey, Q)) { ret=-2; goto err; }

    ret = 1;

err:
    if (ctx) {
        BN_CTX_end(ctx);
        BN_CTX_free(ctx);
    }
    if (R != NULL) EC_POINT_free(R);
    if (O != NULL) EC_POINT_free(O);
    if (Q != NULL) EC_POINT_free(Q);
    return ret;
}

} // anon namespace

CECKey::CECKey() {
    pkey = EC_KEY_new();
    assert(pkey != NULL);
    int result = EC_KEY_set_group(pkey, ecgroup_order::get());
    assert(result);
}

CECKey::~CECKey() {
    EC_KEY_free(pkey);
}

void CECKey::GetPubKey(std::vector<unsigned char> &pubkey, bool fCompressed) {
    EC_KEY_set_conv_form(pkey, fCompressed ? POINT_CONVERSION_COMPRESSED : POINT_CONVERSION_UNCOMPRESSED);
    int nSize = i2o_ECPublicKey(pkey, NULL);
    assert(nSize);
    assert(nSize <= 65);
    pubkey.clear();
    pubkey.resize(nSize);
    unsigned char *pbegin(begin_ptr(pubkey));
    int nSize2 = i2o_ECPublicKey(pkey, &pbegin);
    assert(nSize == nSize2);
}

bool CECKey::SetPubKey(const unsigned char* pubkey, size_t size) {
    return o2i_ECPublicKey(&pkey, &pubkey, size) != NULL;
}

bool CECKey::Verify(const uint256 &hash, const std::vector<unsigned char>& vchSig) {
    if (vchSig.empty())
        return false;

    // New versions of OpenSSL will reject non-canonical DER signatures. de/re-serialize first.
    unsigned char *norm_der = NULL;
    ECDSA_SIG *norm_sig = ECDSA_SIG_new();
    const unsigned char* sigptr = &vchSig[0];
    assert(norm_sig);
    if (d2i_ECDSA_SIG(&norm_sig, &sigptr, vchSig.size()) == NULL)
    {
        /* As of OpenSSL 1.0.0p d2i_ECDSA_SIG frees and nulls the pointer on
         * error. But OpenSSL's own use of this function redundantly frees the
         * result. As ECDSA_SIG_free(NULL) is a no-op, and in the absence of a
         * clear contract for the function behaving the same way is more
         * conservative.
         */
        ECDSA_SIG_free(norm_sig);
        return false;
    }
    int derlen = i2d_ECDSA_SIG(norm_sig, &norm_der);
    ECDSA_SIG_free(norm_sig);
    if (derlen <= 0)
        return false;

    // -1 = error, 0 = bad sig, 1 = good
    bool ret = ECDSA_verify(0, (unsigned char*)&hash, sizeof(hash), norm_der, derlen, pkey) == 1;
    OPENSSL_free(norm_der);
    return ret;
}

bool CECKey::Recover(const uint256 &hash, const unsigned char *p64, int rec)
{
    if (rec<0 || rec>=3)
        return false;
    ECDSA_SIG *sig = ECDSA_SIG_new();
    BN_bin2bn(&p64[0],  32, sig->r);
    BN_bin2bn(&p64[32], 32, sig->s);
    bool ret = ECDSA_SIG_recover_key_GFp(pkey, sig, (unsigned char*)&hash, sizeof(hash), rec, 0) == 1;
    ECDSA_SIG_free(sig);
    return ret;
}

bool CECKey::TweakPublic(const unsigned char vchTweak[32]) {
    bool ret = true;
    BN_CTX *ctx = BN_CTX_new();
    BN_CTX_start(ctx);
    BIGNUM *bnTweak = BN_CTX_get(ctx);
    BIGNUM *bnOrder = BN_CTX_get(ctx);
    BIGNUM *bnOne = BN_CTX_get(ctx);
    const EC_GROUP *group = EC_KEY_get0_group(pkey);
    EC_GROUP_get_order(group, bnOrder, ctx); // what a grossly inefficient way to get the (constant) group order...
    BN_bin2bn(vchTweak, 32, bnTweak);
    if (BN_cmp(bnTweak, bnOrder) >= 0)
        ret = false; // extremely unlikely
    EC_POINT *point = EC_POINT_dup(EC_KEY_get0_public_key(pkey), group);
    BN_one(bnOne);
    EC_POINT_mul(group, point, bnTweak, point, bnOne, ctx);
    if (EC_POINT_is_at_infinity(group, point))
        ret = false; // ridiculously unlikely
    EC_KEY_set_public_key(pkey, point);
    EC_POINT_free(point);
    BN_CTX_end(ctx);
    BN_CTX_free(ctx);
    return ret;
}

bool CECKey::SanityCheck()
{
    const EC_GROUP *pgroup = ecgroup_order::get();
    if(pgroup == NULL)
        return false;
    // TODO Is there more EC functionality that could be missing?
    return true;
}