1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
|
/***********************************************************************
* Copyright (c) 2013, 2014, 2015 Pieter Wuille, Gregory Maxwell *
* Distributed under the MIT software license, see the accompanying *
* file COPYING or https://www.opensource.org/licenses/mit-license.php.*
***********************************************************************/
#ifndef SECP256K1_ECMULT_GEN_IMPL_H
#define SECP256K1_ECMULT_GEN_IMPL_H
#include "util.h"
#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"
#include "hash_impl.h"
#include "ecmult_gen_static_prec_table.h"
static void secp256k1_ecmult_gen_context_build(secp256k1_ecmult_gen_context *ctx) {
secp256k1_ecmult_gen_blind(ctx, NULL);
ctx->built = 1;
}
static int secp256k1_ecmult_gen_context_is_built(const secp256k1_ecmult_gen_context* ctx) {
return ctx->built;
}
static void secp256k1_ecmult_gen_context_clear(secp256k1_ecmult_gen_context *ctx) {
ctx->built = 0;
secp256k1_scalar_clear(&ctx->blind);
secp256k1_gej_clear(&ctx->initial);
}
/* For accelerating the computation of a*G:
* To harden against timing attacks, use the following mechanism:
* * Break up the multiplicand into groups of PREC_BITS bits, called n_0, n_1, n_2, ..., n_(PREC_N-1).
* * Compute sum(n_i * (PREC_G)^i * G + U_i, i=0 ... PREC_N-1), where:
* * U_i = U * 2^i, for i=0 ... PREC_N-2
* * U_i = U * (1-2^(PREC_N-1)), for i=PREC_N-1
* where U is a point with no known corresponding scalar. Note that sum(U_i, i=0 ... PREC_N-1) = 0.
* For each i, and each of the PREC_G possible values of n_i, (n_i * (PREC_G)^i * G + U_i) is
* precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0 ... PREC_N-1).
* None of the resulting prec group elements have a known scalar, and neither do any of
* the intermediate sums while computing a*G.
* The prec values are stored in secp256k1_ecmult_gen_prec_table[i][n_i] = n_i * (PREC_G)^i * G + U_i.
*/
static void secp256k1_ecmult_gen(const secp256k1_ecmult_gen_context *ctx, secp256k1_gej *r, const secp256k1_scalar *gn) {
int bits = ECMULT_GEN_PREC_BITS;
int g = ECMULT_GEN_PREC_G(bits);
int n = ECMULT_GEN_PREC_N(bits);
secp256k1_ge add;
secp256k1_ge_storage adds;
secp256k1_scalar gnb;
int i, j, n_i;
memset(&adds, 0, sizeof(adds));
*r = ctx->initial;
/* Blind scalar/point multiplication by computing (n-b)G + bG instead of nG. */
secp256k1_scalar_add(&gnb, gn, &ctx->blind);
add.infinity = 0;
for (i = 0; i < n; i++) {
n_i = secp256k1_scalar_get_bits(&gnb, i * bits, bits);
for (j = 0; j < g; j++) {
/** This uses a conditional move to avoid any secret data in array indexes.
* _Any_ use of secret indexes has been demonstrated to result in timing
* sidechannels, even when the cache-line access patterns are uniform.
* See also:
* "A word of warning", CHES 2013 Rump Session, by Daniel J. Bernstein and Peter Schwabe
* (https://cryptojedi.org/peter/data/chesrump-20130822.pdf) and
* "Cache Attacks and Countermeasures: the Case of AES", RSA 2006,
* by Dag Arne Osvik, Adi Shamir, and Eran Tromer
* (https://www.tau.ac.il/~tromer/papers/cache.pdf)
*/
secp256k1_ge_storage_cmov(&adds, &secp256k1_ecmult_gen_prec_table[i][j], j == n_i);
}
secp256k1_ge_from_storage(&add, &adds);
secp256k1_gej_add_ge(r, r, &add);
}
n_i = 0;
secp256k1_ge_clear(&add);
secp256k1_scalar_clear(&gnb);
}
/* Setup blinding values for secp256k1_ecmult_gen. */
static void secp256k1_ecmult_gen_blind(secp256k1_ecmult_gen_context *ctx, const unsigned char *seed32) {
secp256k1_scalar b;
secp256k1_gej gb;
secp256k1_fe s;
unsigned char nonce32[32];
secp256k1_rfc6979_hmac_sha256 rng;
int overflow;
unsigned char keydata[64] = {0};
if (seed32 == NULL) {
/* When seed is NULL, reset the initial point and blinding value. */
secp256k1_gej_set_ge(&ctx->initial, &secp256k1_ge_const_g);
secp256k1_gej_neg(&ctx->initial, &ctx->initial);
secp256k1_scalar_set_int(&ctx->blind, 1);
}
/* The prior blinding value (if not reset) is chained forward by including it in the hash. */
secp256k1_scalar_get_b32(nonce32, &ctx->blind);
/** Using a CSPRNG allows a failure free interface, avoids needing large amounts of random data,
* and guards against weak or adversarial seeds. This is a simpler and safer interface than
* asking the caller for blinding values directly and expecting them to retry on failure.
*/
memcpy(keydata, nonce32, 32);
if (seed32 != NULL) {
memcpy(keydata + 32, seed32, 32);
}
secp256k1_rfc6979_hmac_sha256_initialize(&rng, keydata, seed32 ? 64 : 32);
memset(keydata, 0, sizeof(keydata));
/* Accept unobservably small non-uniformity. */
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
overflow = !secp256k1_fe_set_b32(&s, nonce32);
overflow |= secp256k1_fe_is_zero(&s);
secp256k1_fe_cmov(&s, &secp256k1_fe_one, overflow);
/* Randomize the projection to defend against multiplier sidechannels. */
secp256k1_gej_rescale(&ctx->initial, &s);
secp256k1_fe_clear(&s);
secp256k1_rfc6979_hmac_sha256_generate(&rng, nonce32, 32);
secp256k1_scalar_set_b32(&b, nonce32, NULL);
/* A blinding value of 0 works, but would undermine the projection hardening. */
secp256k1_scalar_cmov(&b, &secp256k1_scalar_one, secp256k1_scalar_is_zero(&b));
secp256k1_rfc6979_hmac_sha256_finalize(&rng);
memset(nonce32, 0, 32);
secp256k1_ecmult_gen(ctx, &gb, &b);
secp256k1_scalar_negate(&b, &b);
ctx->blind = b;
ctx->initial = gb;
secp256k1_scalar_clear(&b);
secp256k1_gej_clear(&gb);
}
#endif /* SECP256K1_ECMULT_GEN_IMPL_H */
|