aboutsummaryrefslogtreecommitdiff
path: root/src/ecmult_gen_impl.h
blob: 849452c7a1b673d2d743cc0b83fa8734810d2693 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
/**********************************************************************
 * Copyright (c) 2013, 2014 Pieter Wuille                             *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

#ifndef _SECP256K1_ECMULT_GEN_IMPL_H_
#define _SECP256K1_ECMULT_GEN_IMPL_H_

#include "scalar.h"
#include "group.h"
#include "ecmult_gen.h"

typedef struct {
    /* For accelerating the computation of a*G:
     * To harden against timing attacks, use the following mechanism:
     * * Break up the multiplicand into groups of 4 bits, called n_0, n_1, n_2, ..., n_63.
     * * Compute sum(n_i * 16^i * G + U_i, i=0..63), where:
     *   * U_i = U * 2^i (for i=0..62)
     *   * U_i = U * (1-2^63) (for i=63)
     *   where U is a point with no known corresponding scalar. Note that sum(U_i, i=0..63) = 0.
     * For each i, and each of the 16 possible values of n_i, (n_i * 16^i * G + U_i) is
     * precomputed (call it prec(i, n_i)). The formula now becomes sum(prec(i, n_i), i=0..63).
     * None of the resulting prec group elements have a known scalar, and neither do any of
     * the intermediate sums while computing a*G.
     */
    secp256k1_ge_storage_t prec[64][16]; /* prec[j][i] = 16^j * i * G + U_i */
} secp256k1_ecmult_gen_consts_t;

static const secp256k1_ecmult_gen_consts_t *secp256k1_ecmult_gen_consts = NULL;

static void secp256k1_ecmult_gen_start(void) {
    secp256k1_ge_t prec[1024];
    secp256k1_gej_t gj;
    secp256k1_gej_t nums_gej;
    secp256k1_ecmult_gen_consts_t *ret;
    int i, j;
    if (secp256k1_ecmult_gen_consts != NULL)
        return;

    /* Allocate the precomputation table. */
    ret = (secp256k1_ecmult_gen_consts_t*)checked_malloc(sizeof(secp256k1_ecmult_gen_consts_t));

    /* get the generator */
    secp256k1_gej_set_ge(&gj, &secp256k1_ge_const_g);

    /* Construct a group element with no known corresponding scalar (nothing up my sleeve). */
    {
        static const unsigned char nums_b32[33] = "The scalar for this x is unknown";
        secp256k1_fe_t nums_x;
        secp256k1_ge_t nums_ge;
        VERIFY_CHECK(secp256k1_fe_set_b32(&nums_x, nums_b32));
        VERIFY_CHECK(secp256k1_ge_set_xo_var(&nums_ge, &nums_x, 0));
        secp256k1_gej_set_ge(&nums_gej, &nums_ge);
        /* Add G to make the bits in x uniformly distributed. */
        secp256k1_gej_add_ge_var(&nums_gej, &nums_gej, &secp256k1_ge_const_g);
    }

    /* compute prec. */
    {
        secp256k1_gej_t precj[1024]; /* Jacobian versions of prec. */
        secp256k1_gej_t gbase;
        secp256k1_gej_t numsbase;
        gbase = gj; /* 16^j * G */
        numsbase = nums_gej; /* 2^j * nums. */
        for (j = 0; j < 64; j++) {
            /* Set precj[j*16 .. j*16+15] to (numsbase, numsbase + gbase, ..., numsbase + 15*gbase). */
            precj[j*16] = numsbase;
            for (i = 1; i < 16; i++) {
                secp256k1_gej_add_var(&precj[j*16 + i], &precj[j*16 + i - 1], &gbase);
            }
            /* Multiply gbase by 16. */
            for (i = 0; i < 4; i++) {
                secp256k1_gej_double_var(&gbase, &gbase);
            }
            /* Multiply numbase by 2. */
            secp256k1_gej_double_var(&numsbase, &numsbase);
            if (j == 62) {
                /* In the last iteration, numsbase is (1 - 2^j) * nums instead. */
                secp256k1_gej_neg(&numsbase, &numsbase);
                secp256k1_gej_add_var(&numsbase, &numsbase, &nums_gej);
            }
        }
        secp256k1_ge_set_all_gej_var(1024, prec, precj);
    }
    for (j = 0; j < 64; j++) {
        for (i = 0; i < 16; i++) {
            secp256k1_ge_to_storage(&ret->prec[j][i], &prec[j*16 + i]);
        }
    }

    /* Set the global pointer to the precomputation table. */
    secp256k1_ecmult_gen_consts = ret;
}

static void secp256k1_ecmult_gen_stop(void) {
    secp256k1_ecmult_gen_consts_t *c;
    if (secp256k1_ecmult_gen_consts == NULL)
        return;

    c = (secp256k1_ecmult_gen_consts_t*)secp256k1_ecmult_gen_consts;
    secp256k1_ecmult_gen_consts = NULL;
    free(c);
}

static void secp256k1_ecmult_gen(secp256k1_gej_t *r, const secp256k1_scalar_t *gn) {
    const secp256k1_ecmult_gen_consts_t *c = secp256k1_ecmult_gen_consts;
    secp256k1_ge_t add;
    secp256k1_ge_storage_t adds;
    int bits;
    int i, j;
    secp256k1_gej_set_infinity(r);
    add.infinity = 0;
    for (j = 0; j < 64; j++) {
        bits = secp256k1_scalar_get_bits(gn, j * 4, 4);
        for (i = 0; i < 16; i++) {
            secp256k1_ge_storage_cmov(&adds, &c->prec[j][i], i == bits);
        }
        secp256k1_ge_from_storage(&add, &adds);
        secp256k1_gej_add_ge(r, r, &add);
    }
    bits = 0;
    secp256k1_ge_clear(&add);
}

#endif