aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/sha3.cpp
blob: 9c0c42fa7743f037c329de8d18eccf7d4d6bc3bf (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
// Copyright (c) 2020 The Bitcoin Core developers
// Distributed under the MIT software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

// Based on https://github.com/mjosaarinen/tiny_sha3/blob/master/sha3.c
// by Markku-Juhani O. Saarinen <mjos@iki.fi>

#include <crypto/sha3.h>
#include <crypto/common.h>
#include <span.h>

#include <algorithm>
#include <array> // For std::begin and std::end.

#include <stdint.h>

// Internal implementation code.
namespace
{
uint64_t Rotl(uint64_t x, int n) { return (x << n) | (x >> (64 - n)); }
} // namespace

void KeccakF(uint64_t (&st)[25])
{
    static constexpr uint64_t RNDC[24] = {
        0x0000000000000001, 0x0000000000008082, 0x800000000000808a, 0x8000000080008000,
        0x000000000000808b, 0x0000000080000001, 0x8000000080008081, 0x8000000000008009,
        0x000000000000008a, 0x0000000000000088, 0x0000000080008009, 0x000000008000000a,
        0x000000008000808b, 0x800000000000008b, 0x8000000000008089, 0x8000000000008003,
        0x8000000000008002, 0x8000000000000080, 0x000000000000800a, 0x800000008000000a,
        0x8000000080008081, 0x8000000000008080, 0x0000000080000001, 0x8000000080008008
    };
    static constexpr int ROUNDS = 24;

    for (int round = 0; round < ROUNDS; ++round) {
        uint64_t bc0, bc1, bc2, bc3, bc4, t;

        // Theta
        bc0 = st[0] ^ st[5] ^ st[10] ^ st[15] ^ st[20];
        bc1 = st[1] ^ st[6] ^ st[11] ^ st[16] ^ st[21];
        bc2 = st[2] ^ st[7] ^ st[12] ^ st[17] ^ st[22];
        bc3 = st[3] ^ st[8] ^ st[13] ^ st[18] ^ st[23];
        bc4 = st[4] ^ st[9] ^ st[14] ^ st[19] ^ st[24];
        t = bc4 ^ Rotl(bc1, 1); st[0] ^= t; st[5] ^= t; st[10] ^= t; st[15] ^= t; st[20] ^= t;
        t = bc0 ^ Rotl(bc2, 1); st[1] ^= t; st[6] ^= t; st[11] ^= t; st[16] ^= t; st[21] ^= t;
        t = bc1 ^ Rotl(bc3, 1); st[2] ^= t; st[7] ^= t; st[12] ^= t; st[17] ^= t; st[22] ^= t;
        t = bc2 ^ Rotl(bc4, 1); st[3] ^= t; st[8] ^= t; st[13] ^= t; st[18] ^= t; st[23] ^= t;
        t = bc3 ^ Rotl(bc0, 1); st[4] ^= t; st[9] ^= t; st[14] ^= t; st[19] ^= t; st[24] ^= t;

        // Rho Pi
        t = st[1];
        bc0 = st[10]; st[10] = Rotl(t, 1); t = bc0;
        bc0 = st[7]; st[7] = Rotl(t, 3); t = bc0;
        bc0 = st[11]; st[11] = Rotl(t, 6); t = bc0;
        bc0 = st[17]; st[17] = Rotl(t, 10); t = bc0;
        bc0 = st[18]; st[18] = Rotl(t, 15); t = bc0;
        bc0 = st[3]; st[3] = Rotl(t, 21); t = bc0;
        bc0 = st[5]; st[5] = Rotl(t, 28); t = bc0;
        bc0 = st[16]; st[16] = Rotl(t, 36); t = bc0;
        bc0 = st[8]; st[8] = Rotl(t, 45); t = bc0;
        bc0 = st[21]; st[21] = Rotl(t, 55); t = bc0;
        bc0 = st[24]; st[24] = Rotl(t, 2); t = bc0;
        bc0 = st[4]; st[4] = Rotl(t, 14); t = bc0;
        bc0 = st[15]; st[15] = Rotl(t, 27); t = bc0;
        bc0 = st[23]; st[23] = Rotl(t, 41); t = bc0;
        bc0 = st[19]; st[19] = Rotl(t, 56); t = bc0;
        bc0 = st[13]; st[13] = Rotl(t, 8); t = bc0;
        bc0 = st[12]; st[12] = Rotl(t, 25); t = bc0;
        bc0 = st[2]; st[2] = Rotl(t, 43); t = bc0;
        bc0 = st[20]; st[20] = Rotl(t, 62); t = bc0;
        bc0 = st[14]; st[14] = Rotl(t, 18); t = bc0;
        bc0 = st[22]; st[22] = Rotl(t, 39); t = bc0;
        bc0 = st[9]; st[9] = Rotl(t, 61); t = bc0;
        bc0 = st[6]; st[6] = Rotl(t, 20); t = bc0;
        st[1] = Rotl(t, 44);

        // Chi Iota
        bc0 = st[0]; bc1 = st[1]; bc2 = st[2]; bc3 = st[3]; bc4 = st[4];
        st[0] = bc0 ^ (~bc1 & bc2) ^ RNDC[round];
        st[1] = bc1 ^ (~bc2 & bc3);
        st[2] = bc2 ^ (~bc3 & bc4);
        st[3] = bc3 ^ (~bc4 & bc0);
        st[4] = bc4 ^ (~bc0 & bc1);
        bc0 = st[5]; bc1 = st[6]; bc2 = st[7]; bc3 = st[8]; bc4 = st[9];
        st[5] = bc0 ^ (~bc1 & bc2);
        st[6] = bc1 ^ (~bc2 & bc3);
        st[7] = bc2 ^ (~bc3 & bc4);
        st[8] = bc3 ^ (~bc4 & bc0);
        st[9] = bc4 ^ (~bc0 & bc1);
        bc0 = st[10]; bc1 = st[11]; bc2 = st[12]; bc3 = st[13]; bc4 = st[14];
        st[10] = bc0 ^ (~bc1 & bc2);
        st[11] = bc1 ^ (~bc2 & bc3);
        st[12] = bc2 ^ (~bc3 & bc4);
        st[13] = bc3 ^ (~bc4 & bc0);
        st[14] = bc4 ^ (~bc0 & bc1);
        bc0 = st[15]; bc1 = st[16]; bc2 = st[17]; bc3 = st[18]; bc4 = st[19];
        st[15] = bc0 ^ (~bc1 & bc2);
        st[16] = bc1 ^ (~bc2 & bc3);
        st[17] = bc2 ^ (~bc3 & bc4);
        st[18] = bc3 ^ (~bc4 & bc0);
        st[19] = bc4 ^ (~bc0 & bc1);
        bc0 = st[20]; bc1 = st[21]; bc2 = st[22]; bc3 = st[23]; bc4 = st[24];
        st[20] = bc0 ^ (~bc1 & bc2);
        st[21] = bc1 ^ (~bc2 & bc3);
        st[22] = bc2 ^ (~bc3 & bc4);
        st[23] = bc3 ^ (~bc4 & bc0);
        st[24] = bc4 ^ (~bc0 & bc1);
    }
}

SHA3_256& SHA3_256::Write(Span<const unsigned char> data)
{
    if (m_bufsize && m_bufsize + data.size() >= sizeof(m_buffer)) {
        // Fill the buffer and process it.
        std::copy(data.begin(), data.begin() + sizeof(m_buffer) - m_bufsize, m_buffer + m_bufsize);
        data = data.subspan(sizeof(m_buffer) - m_bufsize);
        m_state[m_pos++] ^= ReadLE64(m_buffer);
        m_bufsize = 0;
        if (m_pos == RATE_BUFFERS) {
            KeccakF(m_state);
            m_pos = 0;
        }
    }
    while (data.size() >= sizeof(m_buffer)) {
        // Process chunks directly from the buffer.
        m_state[m_pos++] ^= ReadLE64(data.data());
        data = data.subspan(8);
        if (m_pos == RATE_BUFFERS) {
            KeccakF(m_state);
            m_pos = 0;
        }
    }
    if (data.size()) {
        // Keep the remainder in the buffer.
        std::copy(data.begin(), data.end(), m_buffer + m_bufsize);
        m_bufsize += data.size();
    }
    return *this;
}

SHA3_256& SHA3_256::Finalize(Span<unsigned char> output)
{
    assert(output.size() == OUTPUT_SIZE);
    std::fill(m_buffer + m_bufsize, m_buffer + sizeof(m_buffer), 0);
    m_buffer[m_bufsize] ^= 0x06;
    m_state[m_pos] ^= ReadLE64(m_buffer);
    m_state[RATE_BUFFERS - 1] ^= 0x8000000000000000;
    KeccakF(m_state);
    for (unsigned i = 0; i < 4; ++i) {
        WriteLE64(output.data() + 8 * i, m_state[i]);
    }
    return *this;
}

SHA3_256& SHA3_256::Reset()
{
    m_bufsize = 0;
    m_pos = 0;
    std::fill(std::begin(m_state), std::end(m_state), 0);
    return *this;
}