aboutsummaryrefslogtreecommitdiff
path: root/src/crypto/ctaes/ctaes.c
blob: 2389fc0bb254f70c0be4863fa8cc2273210b9442 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
 /*********************************************************************
 * Copyright (c) 2016 Pieter Wuille                                   *
 * Distributed under the MIT software license, see the accompanying   *
 * file COPYING or http://www.opensource.org/licenses/mit-license.php.*
 **********************************************************************/

/* Constant time, unoptimized, concise, plain C, AES implementation
 * Based On:
 *   Emilia Kasper and Peter Schwabe, Faster and Timing-Attack Resistant AES-GCM
 *   http://www.iacr.org/archive/ches2009/57470001/57470001.pdf
 * But using 8 16-bit integers representing a single AES state rather than 8 128-bit
 * integers representing 8 AES states.
 */

#include "ctaes.h"

/* Slice variable slice_i contains the i'th bit of the 16 state variables in this order:
 *  0  1  2  3
 *  4  5  6  7
 *  8  9 10 11
 * 12 13 14 15
 */

/** Convert a byte to sliced form, storing it corresponding to given row and column in s */
static void LoadByte(AES_state* s, unsigned char byte, int r, int c) {
    int i;
    for (i = 0; i < 8; i++) {
        s->slice[i] |= (byte & 1) << (r * 4 + c);
        byte >>= 1;
    }
}

/** Load 16 bytes of data into 8 sliced integers */
static void LoadBytes(AES_state *s, const unsigned char* data16) {
    int c;
    for (c = 0; c < 4; c++) {
        int r;
        for (r = 0; r < 4; r++) {
            LoadByte(s, *(data16++), r, c);
        }
    }
}

/** Convert 8 sliced integers into 16 bytes of data */
static void SaveBytes(unsigned char* data16, const AES_state *s) {
    int c;
    for (c = 0; c < 4; c++) {
        int r;
        for (r = 0; r < 4; r++) {
            int b;
            uint8_t v = 0;
            for (b = 0; b < 8; b++) {
                v |= ((s->slice[b] >> (r * 4 + c)) & 1) << b;
            }
            *(data16++) = v;
        }
    }
}

/* S-box implementation based on the gate logic from:
 *   Joan Boyar and Rene Peralta, A depth-16 circuit for the AES S-box.
 *   https://eprint.iacr.org/2011/332.pdf
*/
static void SubBytes(AES_state *s, int inv) {
    /* Load the bit slices */
    uint16_t U0 = s->slice[7], U1 = s->slice[6], U2 = s->slice[5], U3 = s->slice[4];
    uint16_t U4 = s->slice[3], U5 = s->slice[2], U6 = s->slice[1], U7 = s->slice[0];

    uint16_t T1, T2, T3, T4, T5, T6, T7, T8, T9, T10, T11, T12, T13, T14, T15, T16;
    uint16_t T17, T18, T19, T20, T21, T22, T23, T24, T25, T26, T27, D;
    uint16_t M1, M6, M11, M13, M15, M20, M21, M22, M23, M25, M37, M38, M39, M40;
    uint16_t M41, M42, M43, M44, M45, M46, M47, M48, M49, M50, M51, M52, M53, M54;
    uint16_t M55, M56, M57, M58, M59, M60, M61, M62, M63;

    if (inv) {
        uint16_t R5, R13, R17, R18, R19;
        /* Undo linear postprocessing */
        T23 = U0 ^ U3;
        T22 = ~(U1 ^ U3);
        T2 = ~(U0 ^ U1);
        T1 = U3 ^ U4;
        T24 = ~(U4 ^ U7);
        R5 = U6 ^ U7;
        T8 = ~(U1 ^ T23);
        T19 = T22 ^ R5;
        T9 = ~(U7 ^ T1);
        T10 = T2 ^ T24;
        T13 = T2 ^ R5;
        T3 = T1 ^ R5;
        T25 = ~(U2 ^ T1);
        R13 = U1 ^ U6;
        T17 = ~(U2 ^ T19);
        T20 = T24 ^ R13;
        T4 = U4 ^ T8;
        R17 = ~(U2 ^ U5);
        R18 = ~(U5 ^ U6);
        R19 = ~(U2 ^ U4);
        D = U0 ^ R17;
        T6 = T22 ^ R17;
        T16 = R13 ^ R19;
        T27 = T1 ^ R18;
        T15 = T10 ^ T27;
        T14 = T10 ^ R18;
        T26 = T3 ^ T16;
    } else {
        /* Linear preprocessing. */
        T1 = U0 ^ U3;
        T2 = U0 ^ U5;
        T3 = U0 ^ U6;
        T4 = U3 ^ U5;
        T5 = U4 ^ U6;
        T6 = T1 ^ T5;
        T7 = U1 ^ U2;
        T8 = U7 ^ T6;
        T9 = U7 ^ T7;
        T10 = T6 ^ T7;
        T11 = U1 ^ U5;
        T12 = U2 ^ U5;
        T13 = T3 ^ T4;
        T14 = T6 ^ T11;
        T15 = T5 ^ T11;
        T16 = T5 ^ T12;
        T17 = T9 ^ T16;
        T18 = U3 ^ U7;
        T19 = T7 ^ T18;
        T20 = T1 ^ T19;
        T21 = U6 ^ U7;
        T22 = T7 ^ T21;
        T23 = T2 ^ T22;
        T24 = T2 ^ T10;
        T25 = T20 ^ T17;
        T26 = T3 ^ T16;
        T27 = T1 ^ T12;
        D = U7;
    }

    /* Non-linear transformation (identical to the code in SubBytes) */
    M1 = T13 & T6;
    M6 = T3 & T16;
    M11 = T1 & T15;
    M13 = (T4 & T27) ^ M11;
    M15 = (T2 & T10) ^ M11;
    M20 = T14 ^ M1 ^ (T23 & T8) ^ M13;
    M21 = (T19 & D) ^ M1 ^ T24 ^ M15;
    M22 = T26 ^ M6 ^ (T22 & T9) ^ M13;
    M23 = (T20 & T17) ^ M6 ^ M15 ^ T25;
    M25 = M22 & M20;
    M37 = M21 ^ ((M20 ^ M21) & (M23 ^ M25));
    M38 = M20 ^ M25 ^ (M21 | (M20 & M23));
    M39 = M23 ^ ((M22 ^ M23) & (M21 ^ M25));
    M40 = M22 ^ M25 ^ (M23 | (M21 & M22));
    M41 = M38 ^ M40;
    M42 = M37 ^ M39;
    M43 = M37 ^ M38;
    M44 = M39 ^ M40;
    M45 = M42 ^ M41;
    M46 = M44 & T6;
    M47 = M40 & T8;
    M48 = M39 & D;
    M49 = M43 & T16;
    M50 = M38 & T9;
    M51 = M37 & T17;
    M52 = M42 & T15;
    M53 = M45 & T27;
    M54 = M41 & T10;
    M55 = M44 & T13;
    M56 = M40 & T23;
    M57 = M39 & T19;
    M58 = M43 & T3;
    M59 = M38 & T22;
    M60 = M37 & T20;
    M61 = M42 & T1;
    M62 = M45 & T4;
    M63 = M41 & T2;

    if (inv){
        /* Undo linear preprocessing */
        uint16_t P0 = M52 ^ M61;
        uint16_t P1 = M58 ^ M59;
        uint16_t P2 = M54 ^ M62;
        uint16_t P3 = M47 ^ M50;
        uint16_t P4 = M48 ^ M56;
        uint16_t P5 = M46 ^ M51;
        uint16_t P6 = M49 ^ M60;
        uint16_t P7 = P0 ^ P1;
        uint16_t P8 = M50 ^ M53;
        uint16_t P9 = M55 ^ M63;
        uint16_t P10 = M57 ^ P4;
        uint16_t P11 = P0 ^ P3;
        uint16_t P12 = M46 ^ M48;
        uint16_t P13 = M49 ^ M51;
        uint16_t P14 = M49 ^ M62;
        uint16_t P15 = M54 ^ M59;
        uint16_t P16 = M57 ^ M61;
        uint16_t P17 = M58 ^ P2;
        uint16_t P18 = M63 ^ P5;
        uint16_t P19 = P2 ^ P3;
        uint16_t P20 = P4 ^ P6;
        uint16_t P22 = P2 ^ P7;
        uint16_t P23 = P7 ^ P8;
        uint16_t P24 = P5 ^ P7;
        uint16_t P25 = P6 ^ P10;
        uint16_t P26 = P9 ^ P11;
        uint16_t P27 = P10 ^ P18;
        uint16_t P28 = P11 ^ P25;
        uint16_t P29 = P15 ^ P20;
        s->slice[7] = P13 ^ P22;
        s->slice[6] = P26 ^ P29;
        s->slice[5] = P17 ^ P28;
        s->slice[4] = P12 ^ P22;
        s->slice[3] = P23 ^ P27;
        s->slice[2] = P19 ^ P24;
        s->slice[1] = P14 ^ P23;
        s->slice[0] = P9 ^ P16;
    } else {
        /* Linear postprocessing */
        uint16_t L0 = M61 ^ M62;
        uint16_t L1 = M50 ^ M56;
        uint16_t L2 = M46 ^ M48;
        uint16_t L3 = M47 ^ M55;
        uint16_t L4 = M54 ^ M58;
        uint16_t L5 = M49 ^ M61;
        uint16_t L6 = M62 ^ L5;
        uint16_t L7 = M46 ^ L3;
        uint16_t L8 = M51 ^ M59;
        uint16_t L9 = M52 ^ M53;
        uint16_t L10 = M53 ^ L4;
        uint16_t L11 = M60 ^ L2;
        uint16_t L12 = M48 ^ M51;
        uint16_t L13 = M50 ^ L0;
        uint16_t L14 = M52 ^ M61;
        uint16_t L15 = M55 ^ L1;
        uint16_t L16 = M56 ^ L0;
        uint16_t L17 = M57 ^ L1;
        uint16_t L18 = M58 ^ L8;
        uint16_t L19 = M63 ^ L4;
        uint16_t L20 = L0 ^ L1;
        uint16_t L21 = L1 ^ L7;
        uint16_t L22 = L3 ^ L12;
        uint16_t L23 = L18 ^ L2;
        uint16_t L24 = L15 ^ L9;
        uint16_t L25 = L6 ^ L10;
        uint16_t L26 = L7 ^ L9;
        uint16_t L27 = L8 ^ L10;
        uint16_t L28 = L11 ^ L14;
        uint16_t L29 = L11 ^ L17;
        s->slice[7] = L6 ^ L24;
        s->slice[6] = ~(L16 ^ L26);
        s->slice[5] = ~(L19 ^ L28);
        s->slice[4] = L6 ^ L21;
        s->slice[3] = L20 ^ L22;
        s->slice[2] = L25 ^ L29;
        s->slice[1] = ~(L13 ^ L27);
        s->slice[0] = ~(L6 ^ L23);
    }
}

#define BIT_RANGE(from,to) (((1 << ((to) - (from))) - 1) << (from))

#define BIT_RANGE_LEFT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) << (shift))
#define BIT_RANGE_RIGHT(x,from,to,shift) (((x) & BIT_RANGE((from), (to))) >> (shift))

static void ShiftRows(AES_state* s) {
    int i;
    for (i = 0; i < 8; i++) {
        uint16_t v = s->slice[i];
        s->slice[i] =
            (v & BIT_RANGE(0, 4)) |
            BIT_RANGE_LEFT(v, 4, 5, 3) | BIT_RANGE_RIGHT(v, 5, 8, 1) |
            BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
            BIT_RANGE_LEFT(v, 12, 15, 1) | BIT_RANGE_RIGHT(v, 15, 16, 3);
    }
}

static void InvShiftRows(AES_state* s) {
    int i;
    for (i = 0; i < 8; i++) {
        uint16_t v = s->slice[i];
        s->slice[i] =
            (v & BIT_RANGE(0, 4)) |
            BIT_RANGE_LEFT(v, 4, 7, 1) | BIT_RANGE_RIGHT(v, 7, 8, 3) |
            BIT_RANGE_LEFT(v, 8, 10, 2) | BIT_RANGE_RIGHT(v, 10, 12, 2) |
            BIT_RANGE_LEFT(v, 12, 13, 3) | BIT_RANGE_RIGHT(v, 13, 16, 1);
    }
}

#define ROT(x,b) (((x) >> ((b) * 4)) | ((x) << ((4-(b)) * 4)))

static void MixColumns(AES_state* s, int inv) {
    /* The MixColumns transform treats the bytes of the columns of the state as
     * coefficients of a 3rd degree polynomial over GF(2^8) and multiplies them
     * by the fixed polynomial a(x) = {03}x^3 + {01}x^2 + {01}x + {02}, modulo
     * x^4 + {01}.
     *
     * In the inverse transform, we multiply by the inverse of a(x),
     * a^-1(x) = {0b}x^3 + {0d}x^2 + {09}x + {0e}. This is equal to
     * a(x) * ({04}x^2 + {05}), so we can reuse the forward transform's code
     * (found in OpenSSL's bsaes-x86_64.pl, attributed to Jussi Kivilinna)
     *
     * In the bitsliced representation, a multiplication of every column by x
     * mod x^4 + 1 is simply a right rotation.
     */

    /* Shared for both directions is a multiplication by a(x), which can be
     * rewritten as (x^3 + x^2 + x) + {02}*(x^3 + {01}).
     *
     * First compute s into the s? variables, (x^3 + {01}) * s into the s?_01
     * variables and (x^3 + x^2 + x)*s into the s?_123 variables.
     */
    uint16_t s0 = s->slice[0], s1 = s->slice[1], s2 = s->slice[2], s3 = s->slice[3];
    uint16_t s4 = s->slice[4], s5 = s->slice[5], s6 = s->slice[6], s7 = s->slice[7];
    uint16_t s0_01 = s0 ^ ROT(s0, 1), s0_123 = ROT(s0_01, 1) ^ ROT(s0, 3);
    uint16_t s1_01 = s1 ^ ROT(s1, 1), s1_123 = ROT(s1_01, 1) ^ ROT(s1, 3);
    uint16_t s2_01 = s2 ^ ROT(s2, 1), s2_123 = ROT(s2_01, 1) ^ ROT(s2, 3);
    uint16_t s3_01 = s3 ^ ROT(s3, 1), s3_123 = ROT(s3_01, 1) ^ ROT(s3, 3);
    uint16_t s4_01 = s4 ^ ROT(s4, 1), s4_123 = ROT(s4_01, 1) ^ ROT(s4, 3);
    uint16_t s5_01 = s5 ^ ROT(s5, 1), s5_123 = ROT(s5_01, 1) ^ ROT(s5, 3);
    uint16_t s6_01 = s6 ^ ROT(s6, 1), s6_123 = ROT(s6_01, 1) ^ ROT(s6, 3);
    uint16_t s7_01 = s7 ^ ROT(s7, 1), s7_123 = ROT(s7_01, 1) ^ ROT(s7, 3);
    /* Now compute s = s?_123 + {02} * s?_01. */
    s->slice[0] = s7_01 ^ s0_123;
    s->slice[1] = s7_01 ^ s0_01 ^ s1_123;
    s->slice[2] = s1_01 ^ s2_123;
    s->slice[3] = s7_01 ^ s2_01 ^ s3_123;
    s->slice[4] = s7_01 ^ s3_01 ^ s4_123;
    s->slice[5] = s4_01 ^ s5_123;
    s->slice[6] = s5_01 ^ s6_123;
    s->slice[7] = s6_01 ^ s7_123;
    if (inv) {
        /* In the reverse direction, we further need to multiply by
         * {04}x^2 + {05}, which can be written as {04} * (x^2 + {01}) + {01}.
         *
         * First compute (x^2 + {01}) * s into the t?_02 variables: */
        uint16_t t0_02 = s->slice[0] ^ ROT(s->slice[0], 2);
        uint16_t t1_02 = s->slice[1] ^ ROT(s->slice[1], 2);
        uint16_t t2_02 = s->slice[2] ^ ROT(s->slice[2], 2);
        uint16_t t3_02 = s->slice[3] ^ ROT(s->slice[3], 2);
        uint16_t t4_02 = s->slice[4] ^ ROT(s->slice[4], 2);
        uint16_t t5_02 = s->slice[5] ^ ROT(s->slice[5], 2);
        uint16_t t6_02 = s->slice[6] ^ ROT(s->slice[6], 2);
        uint16_t t7_02 = s->slice[7] ^ ROT(s->slice[7], 2);
        /* And then update s += {04} * t?_02 */
        s->slice[0] ^= t6_02;
        s->slice[1] ^= t6_02 ^ t7_02;
        s->slice[2] ^= t0_02 ^ t7_02;
        s->slice[3] ^= t1_02 ^ t6_02;
        s->slice[4] ^= t2_02 ^ t6_02 ^ t7_02;
        s->slice[5] ^= t3_02 ^ t7_02;
        s->slice[6] ^= t4_02;
        s->slice[7] ^= t5_02;
    }
}

static void AddRoundKey(AES_state* s, const AES_state* round) {
    int b;
    for (b = 0; b < 8; b++) {
        s->slice[b] ^= round->slice[b];
    }
}

/** column_0(s) = column_c(a) */
static void GetOneColumn(AES_state* s, const AES_state* a, int c) {
    int b;
    for (b = 0; b < 8; b++) {
        s->slice[b] = (a->slice[b] >> c) & 0x1111;
    }
}

/** column_c1(r) |= (column_0(s) ^= column_c2(a)) */
static void KeySetupColumnMix(AES_state* s, AES_state* r, const AES_state* a, int c1, int c2) {
    int b;
    for (b = 0; b < 8; b++) {
        r->slice[b] |= ((s->slice[b] ^= ((a->slice[b] >> c2) & 0x1111)) & 0x1111) << c1;
    }
}

/** Rotate the rows in s one position upwards, and xor in r */
static void KeySetupTransform(AES_state* s, const AES_state* r) {
    int b;
    for (b = 0; b < 8; b++) {
        s->slice[b] = ((s->slice[b] >> 4) | (s->slice[b] << 12)) ^ r->slice[b];
    }
}

/* Multiply the cells in s by x, as polynomials over GF(2) mod x^8 + x^4 + x^3 + x + 1 */
static void MultX(AES_state* s) {
    uint16_t top = s->slice[7];
    s->slice[7] = s->slice[6];
    s->slice[6] = s->slice[5];
    s->slice[5] = s->slice[4];
    s->slice[4] = s->slice[3] ^ top;
    s->slice[3] = s->slice[2] ^ top;
    s->slice[2] = s->slice[1];
    s->slice[1] = s->slice[0] ^ top;
    s->slice[0] = top;
}

/** Expand the cipher key into the key schedule.
 *
 *  state must be a pointer to an array of size nrounds + 1.
 *  key must be a pointer to 4 * nkeywords bytes.
 *
 *  AES128 uses nkeywords = 4, nrounds = 10
 *  AES192 uses nkeywords = 6, nrounds = 12
 *  AES256 uses nkeywords = 8, nrounds = 14
 */
static void AES_setup(AES_state* rounds, const uint8_t* key, int nkeywords, int nrounds)
{
    int i;

    /* The one-byte round constant */
    AES_state rcon = {{1,0,0,0,0,0,0,0}};
    /* The number of the word being generated, modulo nkeywords */
    int pos = 0;
    /* The column representing the word currently being processed */
    AES_state column;

    for (i = 0; i < nrounds + 1; i++) {
        int b;
        for (b = 0; b < 8; b++) {
            rounds[i].slice[b] = 0;
        }
    }

    /* The first nkeywords round columns are just taken from the key directly. */
    for (i = 0; i < nkeywords; i++) {
        int r;
        for (r = 0; r < 4; r++) {
            LoadByte(&rounds[i >> 2], *(key++), r, i & 3);
        }
    }

    GetOneColumn(&column, &rounds[(nkeywords - 1) >> 2], (nkeywords - 1) & 3);

    for (i = nkeywords; i < 4 * (nrounds + 1); i++) {
        /* Transform column */
        if (pos == 0) {
            SubBytes(&column, 0);
            KeySetupTransform(&column, &rcon);
            MultX(&rcon);
        } else if (nkeywords > 6 && pos == 4) {
            SubBytes(&column, 0);
        }
        if (++pos == nkeywords) pos = 0;
        KeySetupColumnMix(&column, &rounds[i >> 2], &rounds[(i - nkeywords) >> 2], i & 3, (i - nkeywords) & 3);
    }
}

static void AES_encrypt(const AES_state* rounds, int nrounds, unsigned char* cipher16, const unsigned char* plain16) {
    AES_state s = {{0}};
    int round;

    LoadBytes(&s, plain16);
    AddRoundKey(&s, rounds++);

    for (round = 1; round < nrounds; round++) {
        SubBytes(&s, 0);
        ShiftRows(&s);
        MixColumns(&s, 0);
        AddRoundKey(&s, rounds++);
    }

    SubBytes(&s, 0);
    ShiftRows(&s);
    AddRoundKey(&s, rounds);

    SaveBytes(cipher16, &s);
}

static void AES_decrypt(const AES_state* rounds, int nrounds, unsigned char* plain16, const unsigned char* cipher16) {
    /* Most AES decryption implementations use the alternate scheme
     * (the Equivalent Inverse Cipher), which looks more like encryption, but
     * needs different round constants. We can't reuse any code here anyway, so
     * don't bother. */
    AES_state s = {{0}};
    int round;

    rounds += nrounds;

    LoadBytes(&s, cipher16);
    AddRoundKey(&s, rounds--);

    for (round = 1; round < nrounds; round++) {
        InvShiftRows(&s);
        SubBytes(&s, 1);
        AddRoundKey(&s, rounds--);
        MixColumns(&s, 1);
    }

    InvShiftRows(&s);
    SubBytes(&s, 1);
    AddRoundKey(&s, rounds);

    SaveBytes(plain16, &s);
}

void AES128_init(AES128_ctx* ctx, const unsigned char* key16) {
    AES_setup(ctx->rk, key16, 4, 10);
}

void AES128_encrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
    while (blocks--) {
        AES_encrypt(ctx->rk, 10, cipher16, plain16);
        cipher16 += 16;
        plain16 += 16;
    }
}

void AES128_decrypt(const AES128_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
    while (blocks--) {
        AES_decrypt(ctx->rk, 10, plain16, cipher16);
        cipher16 += 16;
        plain16 += 16;
    }
}

void AES192_init(AES192_ctx* ctx, const unsigned char* key24) {
    AES_setup(ctx->rk, key24, 6, 12);
}

void AES192_encrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
    while (blocks--) {
        AES_encrypt(ctx->rk, 12, cipher16, plain16);
        cipher16 += 16;
        plain16 += 16;
    }

}

void AES192_decrypt(const AES192_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
    while (blocks--) {
        AES_decrypt(ctx->rk, 12, plain16, cipher16);
        cipher16 += 16;
        plain16 += 16;
    }
}

void AES256_init(AES256_ctx* ctx, const unsigned char* key32) {
    AES_setup(ctx->rk, key32, 8, 14);
}

void AES256_encrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* cipher16, const unsigned char* plain16) {
    while (blocks--) {
        AES_encrypt(ctx->rk, 14, cipher16, plain16);
        cipher16 += 16;
        plain16 += 16;
    }
}

void AES256_decrypt(const AES256_ctx* ctx, size_t blocks, unsigned char* plain16, const unsigned char* cipher16) {
    while (blocks--) {
        AES_decrypt(ctx->rk, 14, plain16, cipher16);
        cipher16 += 16;
        plain16 += 16;
    }
}