aboutsummaryrefslogtreecommitdiff
path: root/src/crypter.cpp
blob: 47e686a43234dbfb2c3d2d7af4a9afe2e811710d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
// Copyright (c) 2011 The Bitcoin Developers
// Distributed under the MIT/X11 software license, see the accompanying
// file COPYING or http://www.opensource.org/licenses/mit-license.php.

#include <openssl/aes.h>
#include <openssl/evp.h>
#include <vector>
#include <string>
#include "headers.h"
#ifdef WIN32
#include <windows.h>
#endif

#include "crypter.h"
#include "main.h"
#include "util.h"

bool CCrypter::SetKeyFromPassphrase(const SecureString& strKeyData, const std::vector<unsigned char>& chSalt, const unsigned int nRounds, const unsigned int nDerivationMethod)
{
    if (nRounds < 1 || chSalt.size() != WALLET_CRYPTO_SALT_SIZE)
        return false;

    // Try to keep the key data out of swap (and be a bit over-careful to keep the IV that we don't even use out of swap)
    // Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
    // Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.  
    mlock(&chKey[0], sizeof chKey);
    mlock(&chIV[0], sizeof chIV);

    int i = 0;
    if (nDerivationMethod == 0)
        i = EVP_BytesToKey(EVP_aes_256_cbc(), EVP_sha512(), &chSalt[0],
                          (unsigned char *)&strKeyData[0], strKeyData.size(), nRounds, chKey, chIV);

    if (i != (int)WALLET_CRYPTO_KEY_SIZE)
    {
        OPENSSL_cleanse(chKey, sizeof(chKey));
        OPENSSL_cleanse(chIV, sizeof(chIV));
        return false;
    }

    fKeySet = true;
    return true;
}

bool CCrypter::SetKey(const CKeyingMaterial& chNewKey, const std::vector<unsigned char>& chNewIV)
{
    if (chNewKey.size() != WALLET_CRYPTO_KEY_SIZE || chNewIV.size() != WALLET_CRYPTO_KEY_SIZE)
        return false;

    // Try to keep the key data out of swap
    // Note that this does nothing about suspend-to-disk (which will put all our key data on disk)
    // Note as well that at no point in this program is any attempt made to prevent stealing of keys by reading the memory of the running process.  
    mlock(&chKey[0], sizeof chKey);
    mlock(&chIV[0], sizeof chIV);

    memcpy(&chKey[0], &chNewKey[0], sizeof chKey);
    memcpy(&chIV[0], &chNewIV[0], sizeof chIV);

    fKeySet = true;
    return true;
}

bool CCrypter::Encrypt(const CKeyingMaterial& vchPlaintext, std::vector<unsigned char> &vchCiphertext)
{
    if (!fKeySet)
        return false;

    // max ciphertext len for a n bytes of plaintext is
    // n + AES_BLOCK_SIZE - 1 bytes
    int nLen = vchPlaintext.size();
    int nCLen = nLen + AES_BLOCK_SIZE, nFLen = 0;
    vchCiphertext = std::vector<unsigned char> (nCLen);

    EVP_CIPHER_CTX ctx;

    bool fOk = true;

    EVP_CIPHER_CTX_init(&ctx);
    if (fOk) fOk = EVP_EncryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV);
    if (fOk) fOk = EVP_EncryptUpdate(&ctx, &vchCiphertext[0], &nCLen, &vchPlaintext[0], nLen);
    if (fOk) fOk = EVP_EncryptFinal_ex(&ctx, (&vchCiphertext[0])+nCLen, &nFLen);
    EVP_CIPHER_CTX_cleanup(&ctx);

    if (!fOk) return false;

    vchCiphertext.resize(nCLen + nFLen);
    return true;
}

bool CCrypter::Decrypt(const std::vector<unsigned char>& vchCiphertext, CKeyingMaterial& vchPlaintext)
{
    if (!fKeySet)
        return false;

    // plaintext will always be equal to or lesser than length of ciphertext
    int nLen = vchCiphertext.size();
    int nPLen = nLen, nFLen = 0;

    vchPlaintext = CKeyingMaterial(nPLen);

    EVP_CIPHER_CTX ctx;

    bool fOk = true;

    EVP_CIPHER_CTX_init(&ctx);
    if (fOk) fOk = EVP_DecryptInit_ex(&ctx, EVP_aes_256_cbc(), NULL, chKey, chIV);
    if (fOk) fOk = EVP_DecryptUpdate(&ctx, &vchPlaintext[0], &nPLen, &vchCiphertext[0], nLen);
    if (fOk) fOk = EVP_DecryptFinal_ex(&ctx, (&vchPlaintext[0])+nPLen, &nFLen);
    EVP_CIPHER_CTX_cleanup(&ctx);

    if (!fOk) return false;

    vchPlaintext.resize(nPLen + nFLen);
    return true;
}


bool EncryptSecret(CKeyingMaterial& vMasterKey, const CSecret &vchPlaintext, const uint256& nIV, std::vector<unsigned char> &vchCiphertext)
{
    CCrypter cKeyCrypter;
    std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE);
    memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE);
    if(!cKeyCrypter.SetKey(vMasterKey, chIV))
        return false;
    return cKeyCrypter.Encrypt((CKeyingMaterial)vchPlaintext, vchCiphertext);
}

bool DecryptSecret(const CKeyingMaterial& vMasterKey, const std::vector<unsigned char>& vchCiphertext, const uint256& nIV, CSecret& vchPlaintext)
{
    CCrypter cKeyCrypter;
    std::vector<unsigned char> chIV(WALLET_CRYPTO_KEY_SIZE);
    memcpy(&chIV[0], &nIV, WALLET_CRYPTO_KEY_SIZE);
    if(!cKeyCrypter.SetKey(vMasterKey, chIV))
        return false;
    return cKeyCrypter.Decrypt(vchCiphertext, *((CKeyingMaterial*)&vchPlaintext));
}